ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

Related tags

Deep Learningpytorch
Overview

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning

This repository contains the code for our ICCV 2021 paper:

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning
Sangho Lee*, Jiwan Chung*, Youngjae Yu, Gunhee Kim, Thomas Breuel, Gal Chechik, Yale Song (*: equal contribution)
[paper]

@inproceedings{lee2021acav100m,
    title="{ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning}",
    author={Sangho Lee and Jiwan Chung and Youngjae Yu and Gunhee Kim and Thomas Breuel and Gal Chechik and Yale Song},
    booktitle={ICCV},
    year=2021
}

System Requirements

  • Python >= 3.8.5
  • FFMpeg 4.3.1

Installation

  1. Install PyTorch 1.6.0, torchvision 0.7.0 and torchaudio 0.6.0 for your environment. Follow the instructions in HERE.

  2. Install the other required packages.

pip install -r requirements.txt
python -m nltk.downloader 'punkt'
pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/<cuda version>/torch1.6/index.html
pip install git+https://github.com/jiwanchung/slowfast
pip install torch-scatter==2.0.5 -f https://pytorch-geometric.com/whl/torch-1.6.0+<cuda version>.html

e.g. Replace <cuda version> with cu102 for CUDA 10.2.

Input File Structure

  1. Create the data directory
mkdir data
  1. Prepare the input file.

data/metadata.tsv should be structured as follows. We provide an example input file in examples/metadata.tsv

YOUTUBE_ID\t{"LatestDAFeature": {"Title": TITLE, "Description": DESCRIPTION, "YouTubeCategory": YOUTUBE_CATEGORY, "VideoLength": VIDEO_LENGTH}, "MediaVersionList": [{"Duration": DURATION}]}

Data Curation Pipeline

One-Liner

bash ./run.sh

To enable GPU computation, modify the CUDA_VISIBLE_DEVICES environment variable accordingly. For example, run the above command as export CUDA_VISIBLE_DEVICES=2,3; bash ./run.sh.

Step-by-Step

  1. Filter the videos with metadata.
bash ./metadata_filtering/code/run.sh

The above command will build the data/filtered.tsv file.

  1. Download the actual video files from youtube.
bash ./video_download/code/run.sh

Although we provide a simple download script, we recommend more scalable solutions for downloading large-scale data.

The above command will download the files to data/videos/raw directory.

  1. Segment the videos into 10-second clips.
bash ./clip_segmentation/code/run.sh

The above command will save the segmented clips to data/videos directory.

  1. Extract features from the clips.
bash ./feature_extraction/code/run.sh

The above command will save the extracted features to data/features directory.

This step requires GPU for faster computation.

  1. Perform clustering with the extracted features.
bash ./clustering/code/run.sh

The above command will save the extracted features to data/clusters directory.

This step requires GPU for faster computation.

  1. Select subset with high audio-visual correspondence using the clustering results.
bash ./subset_selection/code/run.sh

The above command will save the selected clip indices to data/datasets directory.

This step requires GPU for faster computation.

The final output should be saved in the data/output.csv file.

Output File Structure

output.csv is structured as follows. We provide an example output file at examples/output.csv.

# SHARD_NAME,FILENAME,YOUTUBE_ID,SEGMENT
shard-000009,qpxektwhzra_292.mp4,qpxektwhzra,"[292.3329999997, 302.3329999997]"

Evaluation

Instructions on downstream evaluation are provided in Evaluation.

Correspondence Retrieval

Instructions on correspondence retrieval experiments are provided in Correspondence Retrieval.

Owner
sangho.lee
sangho.lee
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
sktime companion package for deep learning based on TensorFlow

NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and

sktime 573 Jan 05, 2023
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022