NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

Related tags

Deep Learningnuanced
Overview

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions

Overview

NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns. The dataset focuses on realistic settings where user preferences are extracted from real-world Yelp Open Dataset and paraphrased into natural user responses.

Existing conversational systems are mostly agent-centric, which assumes the user utterances would closely follow the system ontology (for NLU or dialogue state tracking). However, in real-world scenarios, it is highly desirable that the users can speak freely in their own way. It is extremely hard, if not impossible, for the users to adapt to the unknown system ontology.

In this work, we attempt to build a user-centric dialogue system. As there is no clean mapping for a user’s free form utterance to an ontology, we first model the user preferences as estimated distributions over the system ontology and map the users’ utterances to such distributions. Learning such a mapping poses new challenges on reasoning over existing knowledge, ranging from factoid knowledge, commonsense knowledge to the users’ own situations. To this end, we build a new dataset named NUANCED that focuses on such realistic settings for conversational recommendation. We believe NUANCED can serve as a valuable resource to push existing research from the agent-centric system to the user-centric system.

For more details, please refer to the following two papers:
NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions
User Memory Reasoning for Conversational Recommendation

Examples of traditional dataset and NUANCED

Examples of traditional dataset and NUANCED: in real-world scenarios, the free form user utterances often mismatch with system ontology. In NUANCED, we model the user preferences (or dialogue state) as distributions over the ontology, therefore to allow mapping of entities unknown to the system to multiple values and slots for efficient conversation.

Data

In this data release, we have included both the nuanced version where user preferences are mapped to an estimated distribution and the coarse version where user preferences are mapped to discrete slot labels according to system ontology.

  • Folder data_dist: the nuanced version;
  • Folder data_discrete: the coarse version with 0-1 labels;
  • meta.json: ontology for this restaurant domain;

Format for the dataset: A list of dictionaries, with each dictionary as one dialogue of the following important fields:

  • "dialogue": a list of dialog turns. Each turn has the following fields:
  • "role": user or assistant
  • "text": user utterance or system response
  • "dialog_acts": acts of this turn
  • "slots": slots involved in this turn
  • "dist": for user turn, the preference distribution
  • "strategy": strategy 1 means the user utterance does not have grounded ontology terms (implicit reasoning), strategy 2 means the user utterance has grounded ontology terms

Citations

If you want to publish experimental results with our datasets or use the baseline models, please cite the following articles (pdf, pdf):

@article{chen2020nuanced,
  title={NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions},
  author={Chen, Zhiyu and Liu, Honglei and Xu, Hu and Moon, Seungwhan and Zhou, Hao and Liu, Bing},
  journal={arXiv preprint arXiv:2010.12758},
  year={2020}
}
@inproceedings{xu2020user,
  title={User Memory Reasoning for Conversational Recommendation},
  author={Xu, Hu and Moon, Seungwhan and Liu, Honglei and Liu, Bing and Shah, Pararth and Philip, S Yu},
  booktitle={Proceedings of the 28th International Conference on Computational Linguistics},
  pages={5288--5308},
  year={2020}
}

License

NUANCED is released under CC-BY-NC-4.0, see LICENSE for details.

Owner
Facebook Research
Facebook Research
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
pytorch bert intent classification and slot filling

pytorch_bert_intent_classification_and_slot_filling 基于pytorch的中文意图识别和槽位填充 说明 基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依

西西嘛呦 33 Dec 15, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022