Codes and Data Processing Files for our paper.

Related tags

Deep LearningContraWR
Overview

Code Scripts and Processing Files for EEG Sleep Staging Paper

1. Folder Tree

  • ./src_preprocess (data preprocessing files for SHHS and Sleep EDF)

    • sleepEDF_cassette_process.py (script for processing Sleep EDF data)
    • shhs_processing.py (script for processing SHHS dataset)
  • ./src

    • loss.py (the contrastive loss function of MoCo, SimCLR, BYOL, SimSiame and our ContraWR)
    • model.py (the encoder model for Sleep EDF and SHHS data)
    • self_supervised.py (the code for running self-supervised model)
    • supervised.py (the code for running supervised STFT CNN model)
    • utils.py (other functionalities, e.g., data loader)

2. Data Preparation

2.1 Instructions for Sleep EDF

  • Step1: download the Sleep EDF data from https://physionet.org/content/sleep-edfx/1.0.0/
    • we will use the Sleep EDF cassette portion
    mkdir SLEEP_data; cd SLEEP_data
    wget -r -N -c -np https://physionet.org/files/sleep-edfx/1.0.0/
  • Step2: running sleepEDF_cassette_process.py to process the data
    • running the following command line. The data will be stored in ./SLEEP_data/cassette_processed/pretext, ./SLEEP_data/cassette_processed/train and ./SLEEP_data/cassette_processed/test
    cd ../src_preprocess
    python sleepEDF_cassette_process.py

2.2 Instructions for SHHS

  • Step1: download the SHHS data from https://sleepdata.org/datasets/shhs
    mkdir SHHS_data; cd SHHS_data
    [THEN DOWNLOAD YOUR DATASET HERE, NAME THE FOLDER "SHHS"]
  • Step2: running shhs_preprocess.py to process the data
    • running the following command line. The data will be stored in ./SHHS_data/processed/pretext, ./SHHS_data/processed/train and ./SHHS_data/processed/test
    cd ../src_preprocess
    python shhs_process.py

3. Running the Experiments

First, go to the ./src directory, then run the supervised model

cd ./src
# run on the SLEEP dataset
python -W ignore supervised.py --dataset SLEEP --n_dim 128
# run on the SHHS dataset
python -W ignore supervised.py --dataset SHHS --n_dim 256

Second, run the self-supervised models

# run on the SLEEP dataset
python -W ignore self_supervised.py --dataset SLEEP --model ContraWR --n_dim 128
# run on the SHHS dataset
python -W ignore self_supervised.py --dataset SHHS --model ContraWR --n_dim 256
# try other self-supervised models
# change "ContraWR" to "MoCo", "SimCLR", "BYOL", "SimSiam"
Owner
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023