Codes and Data Processing Files for our paper.

Related tags

Deep LearningContraWR
Overview

Code Scripts and Processing Files for EEG Sleep Staging Paper

1. Folder Tree

  • ./src_preprocess (data preprocessing files for SHHS and Sleep EDF)

    • sleepEDF_cassette_process.py (script for processing Sleep EDF data)
    • shhs_processing.py (script for processing SHHS dataset)
  • ./src

    • loss.py (the contrastive loss function of MoCo, SimCLR, BYOL, SimSiame and our ContraWR)
    • model.py (the encoder model for Sleep EDF and SHHS data)
    • self_supervised.py (the code for running self-supervised model)
    • supervised.py (the code for running supervised STFT CNN model)
    • utils.py (other functionalities, e.g., data loader)

2. Data Preparation

2.1 Instructions for Sleep EDF

  • Step1: download the Sleep EDF data from https://physionet.org/content/sleep-edfx/1.0.0/
    • we will use the Sleep EDF cassette portion
    mkdir SLEEP_data; cd SLEEP_data
    wget -r -N -c -np https://physionet.org/files/sleep-edfx/1.0.0/
  • Step2: running sleepEDF_cassette_process.py to process the data
    • running the following command line. The data will be stored in ./SLEEP_data/cassette_processed/pretext, ./SLEEP_data/cassette_processed/train and ./SLEEP_data/cassette_processed/test
    cd ../src_preprocess
    python sleepEDF_cassette_process.py

2.2 Instructions for SHHS

  • Step1: download the SHHS data from https://sleepdata.org/datasets/shhs
    mkdir SHHS_data; cd SHHS_data
    [THEN DOWNLOAD YOUR DATASET HERE, NAME THE FOLDER "SHHS"]
  • Step2: running shhs_preprocess.py to process the data
    • running the following command line. The data will be stored in ./SHHS_data/processed/pretext, ./SHHS_data/processed/train and ./SHHS_data/processed/test
    cd ../src_preprocess
    python shhs_process.py

3. Running the Experiments

First, go to the ./src directory, then run the supervised model

cd ./src
# run on the SLEEP dataset
python -W ignore supervised.py --dataset SLEEP --n_dim 128
# run on the SHHS dataset
python -W ignore supervised.py --dataset SHHS --n_dim 256

Second, run the self-supervised models

# run on the SLEEP dataset
python -W ignore self_supervised.py --dataset SLEEP --model ContraWR --n_dim 128
# run on the SHHS dataset
python -W ignore self_supervised.py --dataset SHHS --model ContraWR --n_dim 256
# try other self-supervised models
# change "ContraWR" to "MoCo", "SimCLR", "BYOL", "SimSiam"
Owner
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022