[CVPR2021] Invertible Image Signal Processing

Overview

Invertible Image Signal Processing

Python 3.6 pytorch 1.4.0

This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)".

Figure: Our framework

Unprocessed RAW data is a highly valuable image format for image editing and computer vision. However, since the file size of RAW data is huge, most users can only get access to processed and compressed sRGB images. To bridge this gap, we design an Invertible Image Signal Processing (InvISP) pipeline, which not only enables rendering visually appealing sRGB images but also allows recovering nearly perfect RAW data. Due to our framework's inherent reversibility, we can reconstruct realistic RAW data instead of synthesizing RAW data from sRGB images, without any memory overhead. We also integrate a differentiable JPEG compression simulator that empowers our framework to reconstruct RAW data from JPEG images. Extensive quantitative and qualitative experiments on two DSLR demonstrate that our method obtains much higher quality in both rendered sRGB images and reconstructed RAW data than alternative methods.

Invertible Image Signal Processing
Yazhou Xing*, Zian Qian*, Qifeng Chen (* indicates joint first authors)
HKUST

[Paper] [Project Page] [Technical Video (Coming soon)]

Figure: Our results

Installation

Clone this repo.

git clone https://github.com/yzxing87/Invertible-ISP.git 
cd Invertible-ISP/

We have tested our code on Ubuntu 18.04 LTS with PyTorch 1.4.0, CUDA 10.1 and cudnn7.6.5. Please install dependencies by

conda env create -f environment.yml

Preparing datasets

We use MIT-Adobe FiveK Dataset for training and evaluation. To reproduce our results, you need to first download the NIKON D700 and Canon EOS 5D subsets from their website. The images (DNG) can be downloaded by

cd data/
bash data_preprocess.sh

The downloading may take a while. After downloading, we need to prepare the bilinearly demosaiced RAW and white balance parameters as network input, and ground truth sRGB (in JPEG format) as supervision.

python data_preprocess.py --camera="NIKON_D700"
python data_preprocess.py --camera="Canon_EOS_5D"

The dataset will be organized into

Path Size Files Format Description
data 585 GB 1 Main folder
├  Canon_EOS_5D 448 GB 1 Canon sub-folder
├  NIKON_D700 137 GB 1 NIKON sub-folder
    ├  DNG 2.9 GB 487 DNG In-the-wild RAW.
    ├  RAW 133 GB 487 NPZ Preprocessed RAW.
    ├  RGB 752 MB 487 JPG Ground-truth RGB.
├  NIKON_D700_train.txt 1 KB 1 TXT Training data split.
├  NIKON_D700_test.txt 5 KB 1 TXT Test data split.

Training networks

We specify the training arguments into train.sh. Simply run

cd ../
bash train.sh

The checkpoints will be saved into ./exps/{exp_name}/checkpoint/.

Test and evaluation

To reconstruct the RAW from JPEG RGB, we need to first save the rendered RGB into disk then do test to recover RAW. Original RAW images are too huge to be directly tested on one 2080 Ti GPU. We provide two ways to test the model.

  1. Subsampling the RAW for visualization purpose:
python test_rgb.py --task=EXPERIMENT_NAME \
                --data_path="./data/" \
                --gamma \
                --camera=CAMERA_NAME \
                --out_path=OUTPUT_PATH \
                --ckpt=CKPT_PATH

After finish, run

python test_raw.py --task=EXPERIMENT_NAME \
                --data_path="./data/" \
                --gamma \
                --camera=CAMERA_NAME \
                --out_path=OUTPUT_PATH \
                --ckpt=CKPT_PATH
  1. Spliting the RAW data into patches, for quantitatively evaluation purpose. Turn on the --split_to_patch argument. See test.sh. The PSNR and SSIM metrics can be obtained by
python cal_metrics.py --path=PATH_TO_SAVED_PATCHES

Citation

@inproceedings{xing21invertible,
  title     = {Invertible Image Signal Processing},
  author    = {Xing, Yazhou and Qian, Zian and Chen, Qifeng},
  booktitle = {CVPR},
  year      = {2021}
}

Acknowledgement

Part of the codes benefit from DiffJPEG and Invertible-Image-Rescaling.

Contact

Free feel to contact me if there is any question. (Yazhou Xing, [email protected])

Owner
Yazhou XING
Ph.D. Candidate at HKUST CSE
Yazhou XING
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
This library is a location of the LegacyLogger for PyTorch Lightning.

neptune-contrib Documentation See neptune-contrib documentation site Installation Get prerequisites python versions 3.5.6/3.6 are supported Install li

neptune.ai 26 Oct 07, 2021
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022