CVPRW 2021: How to calibrate your event camera

Related tags

Deep Learninge2calib
Overview

E2Calib: How to Calibrate Your Event Camera

This repository contains code that implements video reconstruction from event data for calibration as described in the paper Muglikar et al. CVPRW'21.

If you use this code in an academic context, please cite the following work:

Manasi Muglikar, Mathias Gehrig, Daniel Gehrig, Davide Scaramuzza, "How to Calibrate Your Event Camera", Computer Vision and Pattern Recognition Workshops (CVPRW), 2021

@InProceedings{Muglikar2021CVPR,
  author = {Manasi Muglikar and Mathias Gehrig and Daniel Gehrig and Davide Scaramuzza},
  title = {How to Calibrate Your Event Camera},
  booktitle = {{IEEE} Conf. Comput. Vis. Pattern Recog. Workshops (CVPRW)},
  month = {June},
  year = {2021}
}

Installation

The installation procedure is divided into two parts. First, installation of packages for the conversion code that must be completed outside of any virtual environment for compatibility reasons. Second, installation of packages in a conda environment to run the reconstruction code.

Conversion to H5

Our current conversion code supports 2 event file formats:

  1. Rosbags with dvs_msgs
  2. Prophesee raw format using Metavision 2.2

Regardeless of the event file format:

pip3 install --no-cache-dir -r requirements.txt
pip3 install dataclasses # if your system Python version is < 3.7
  • If you want to convert Prophesee raw format, install Metavision 2.2.
  • If you want to convert Rosbags, install:
pip3 install --extra-index-url https://rospypi.github.io/simple/ rospy rosbag

Image Reconstruction

For running the reconstruction code, we create a new conda environment. Use an appropriate cuda version.

cuda_version=10.1

conda create -y -n e2calib python=3.7
conda activate e2calib
conda install -y -c anaconda numpy scipy
conda install -y -c conda-forge h5py opencv tqdm
conda install -y -c pytorch pytorch torchvision cudatoolkit=$cuda_version

The reconstruction code uses events saved in the h5 file format to reconstruct images with E2VID.

Reconstructions to Rosbag

If you want to use kalibr, you may want to create a rosbag from the reconstructed images. To achieve this, additionally install (outside of the conda environment)

pip3 install tqdm opencv-python
pip3 install --extra-index-url https://rospypi.github.io/simple/ sensor-msgs

Calibration Procedure

The calibration procedure is based on three steps:

  1. Conversion of different event data files into a common hdf5 format.
  2. Reconstruction of images at a certain frequency from this file. Requires the activation of the conda environment e2calib.
  3. Calibration using your favorite image-based calibration toolbox.

Conversion to H5

The conversion script simply requires the path to the event file and optionally a ros topic in case of a rosbag.

Reconstruction

The reconstruction requires the h5 file to convert events to frames. Additionally, you also need to specify the height and width of the event camera and the frequency or timestamps at which you want to reconstruct the frames. As an example, to run the image reconstruction code on one of the example files use the following command:

  cd python
  python offline_reconstruction.py  --h5file file --freq_hz 5 --upsample_rate 4 --height 480 --width 640 

The images will be written by default in the python/frames/e2calib folder.

Fixed Frequency

Reconstruction can be performed at a fixed frequency. This is useful for intrinsic calibration. The argument --freq_hz specifies the frequency at which the image reconstructions will be saved.

Specified Timestamps

You can also specify the timestamps for image reconstruction from a text file. As an example, these timestamps can be trigger signals that synchronize the event camera with the exposure time of a frame-based camera. In this scenario, you may want to reconstruct images from the event camera at the trigger timestamps for extrinsic calibration. The argument --timestamps_file must point to a text file containing the timestamps in microseconds for this option to take effect.

We provide a script to extract trigger signals from a prophesee raw file.

Upsampling

We provide the option to multiply the reconstruction rate by a factor via the --upsample_rate argument. For example, setting this value to 3 will lead to 3 times higher reconstruction rate but does not influence the final number of reconstructed images that will be saved. This parameter can be used to finetune the reconstruction performance. For example setting --freq_hz to 5 without upsampling can lead to suboptimal performance because too many events are fed to E2VID. Instead, it is often a good start to work with 20 Hz reconstruction, thus setting the upsampling rate to 4.

Calibration

Once the reconstructed images are ready, you can use any image calibration toolbox. We provide a script to convert the reconstructed images to rosbag, that can be used with kalibr calibration toolbox for intrinsic calibration. Please use this script outside the conda environment.

cd python
python3 images_to_rosbag.py --rosbag_folder python/frames/ --image_folder  python/frames/e2calib --image_topic /dvs/image_reconstructed

In case you would like to combine images with other sensors for extrinsics calibration, please take a look at the kalibr bagcreator script

Example Files

For each file, we provide the original event file format (raw or rosbag) but also the already converted h5 file.

Prophesee Gen 3

Without Triggers:

wget https://download.ifi.uzh.ch/rpg/e2calib/prophesee/without_triggers/data.raw
wget https://download.ifi.uzh.ch/rpg/e2calib/prophesee/without_triggers/data.h5

Reconstruction Example

To reconstruct images from events at a fixed frequency, you can follow this example command:

  conda activate e2calib
  cd python
  python offline_reconstruction.py  --freq_hz 10 --upsample_rate 2 --h5file data.h5 --output_folder gen3_no_trigger --height 480 --width 640

Sample reconstruction

With Triggers:

We also extracted the trigger signals using the provided script and provide them in the triggers.txt file.

wget https://download.ifi.uzh.ch/rpg/e2calib/prophesee/with_triggers/data.raw
wget https://download.ifi.uzh.ch/rpg/e2calib/prophesee/with_triggers/data.h5
wget https://download.ifi.uzh.ch/rpg/e2calib/prophesee/with_triggers/triggers.txt

Reconstruction Example

To reconstruct images from events at the trigger time, you can follow this example command:

  conda activate e2calib
  cd python
  python offline_reconstruction.py  --upsample_rate 2 --h5file data.h5 --output_folder gen3_with_trigger/ --timestamps_file triggers.txt --height 480 --width 640

Samsung Gen 3

Without Triggers:

wget https://download.ifi.uzh.ch/rpg/e2calib/samsung/samsung.bag
wget https://download.ifi.uzh.ch/rpg/e2calib/samsung/samsung.h5

Reconstruction Example

To reconstruct images from events at fixed frequency, you can follow this example command:

  conda activate e2calib
  cd python
  python offline_reconstruction.py --freq_hz 5 --upsample_rate 4 --h5file samsung.h5 --output_folder samsung_gen3 --height 480 --width 640
Owner
Robotics and Perception Group
Robotics and Perception Group
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023