The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Overview

Rule-based Representation Learner

This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scalable Rule-Based Representation Learning for Interpretable Classification.

drawing

RRL aims to obtain both good scalability and interpretability, and it automatically learns interpretable non-fuzzy rules for data representation and classification. Moreover, RRL can be easily adjusted to obtain a trade-off between classification accuracy and model complexity for different scenarios.

Requirements

  • torch>=1.3.0
  • torchvision>=0.4.1
  • tensorboard>=2.0.0
  • sklearn>=0.22.2.post1
  • numpy>=1.17.2
  • pandas>=0.24.2
  • matplotlib>=3.0.3
  • CUDA==10.1

Run the demo

We need to put the data sets in the dataset folder. You can specify one data set in the dataset folder and train the model as follows:

# trained on the tic-tac-toe data set with one GPU.
python3 experiment.py -d tic-tac-toe -bs 32 -s [email protected] -e401 -lrde 200 -lr 0.002 -ki 0 -mp 12481 -i 0 -wd 1e-6 &

The demo reads the data set and data set information first, then trains the RRL on the training set. During the training, you can check the training loss and the evaluation result on the validation set by:

tensorboard --logdir=log_folder/ --bind_all

drawing

The training log file (log.txt) can be found in a folder created in log_folder. In this example, the folder path is

log_folder/tic-tac-toe/tic-tac-toe_e401_bs32_lr0.002_lrdr0.75_lrde200_wd1[email protected]

After training, the evaluation result on the test set is shown in the file test_res.txt:

[INFO] - On Test Set:
        Accuracy of RRL  Model: 1.0
        F1 Score of RRL  Model: 1.0

Moreover, the trained RRL model is saved in model.pth, and the discrete RRL is printed in rrl.txt:

RID class_negative(b=-2.1733) class_positive(b=1.9689) Support Rule
(-1, 1) -5.8271 6.3045 0.0885 3_x & 6_x & 9_x
(-1, 2) -5.4949 5.4566 0.0781 7_x & 8_x & 9_x
(-1, 4) -4.5605 4.7578 0.1146 1_x & 2_x & 3_x
...... ...... ...... ...... ......

Your own data sets

You can use the demo to train RRL on your own data set by putting the data and data information files in the dataset folder. Please read DataSetDesc for a more specific guideline.

Available arguments

List all the available arguments and their default values by:

$ python3 experiment.py --help
usage: experiment.py [-h] [-d DATA_SET] [-i DEVICE_IDS] [-nr NR] [-e EPOCH]
                     [-bs BATCH_SIZE] [-lr LEARNING_RATE]
                     [-lrdr LR_DECAY_RATE] [-lrde LR_DECAY_EPOCH]
                     [-wd WEIGHT_DECAY] [-ki ITH_KFOLD] [-rc ROUND_COUNT]
                     [-ma MASTER_ADDRESS] [-mp MASTER_PORT] [-li LOG_ITER]
                     [--use_not] [--save_best] [--estimated_grad]
                     [-s STRUCTURE]

optional arguments:
  -h, --help            show this help message and exit
  -d DATA_SET, --data_set DATA_SET
                        Set the data set for training. All the data sets in
                        the dataset folder are available. (default: tic-tac-
                        toe)
  -i DEVICE_IDS, --device_ids DEVICE_IDS
                        Set the device (GPU ids). Split by @. E.g., [email protected]@3.
                        (default: None)
  -nr NR, --nr NR       ranking within the nodes (default: 0)
  -e EPOCH, --epoch EPOCH
                        Set the total epoch. (default: 41)
  -bs BATCH_SIZE, --batch_size BATCH_SIZE
                        Set the batch size. (default: 64)
  -lr LEARNING_RATE, --learning_rate LEARNING_RATE
                        Set the initial learning rate. (default: 0.01)
  -lrdr LR_DECAY_RATE, --lr_decay_rate LR_DECAY_RATE
                        Set the learning rate decay rate. (default: 0.75)
  -lrde LR_DECAY_EPOCH, --lr_decay_epoch LR_DECAY_EPOCH
                        Set the learning rate decay epoch. (default: 10)
  -wd WEIGHT_DECAY, --weight_decay WEIGHT_DECAY
                        Set the weight decay (L2 penalty). (default: 0.0)
  -ki ITH_KFOLD, --ith_kfold ITH_KFOLD
                        Do the i-th 5-fold validation, 0 <= ki < 5. (default:
                        0)
  -rc ROUND_COUNT, --round_count ROUND_COUNT
                        Count the round of experiments. (default: 0)
  -ma MASTER_ADDRESS, --master_address MASTER_ADDRESS
                        Set the master address. (default: 127.0.0.1)
  -mp MASTER_PORT, --master_port MASTER_PORT
                        Set the master port. (default: 12345)
  -li LOG_ITER, --log_iter LOG_ITER
                        The number of iterations (batches) to log once.
                        (default: 50)
  --use_not             Use the NOT (~) operator in logical rules. It will
                        enhance model capability but make the RRL more
                        complex. (default: False)
  --save_best           Save the model with best performance on the validation
                        set. (default: False)
  --estimated_grad      Use estimated gradient. (default: False)
  -s STRUCTURE, --structure STRUCTURE
                        Set the number of nodes in the binarization layer and
                        logical layers. E.g., [email protected], [email protected]@[email protected]. (default:
                        [email protected])

Citation

If our work is helpful to you, please kindly cite our paper as:

@article{wang2021scalable,
  title={Scalable Rule-Based Representation Learning for Interpretable Classification},
  author={Wang, Zhuo and Zhang, Wei and Liu, Ning and Wang, Jianyong},
  journal={arXiv preprint arXiv:2109.15103},
  year={2021}
}

License

MIT license

Owner
Zhuo Wang
Ph.D. student
Zhuo Wang
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
Open source person re-identification library in python

Open-ReID Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different da

Tong Xiao 1.3k Jan 01, 2023
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022