competitions-v2

Overview

Codabench

(formerly Codalab Competitions v2)

Installation

$ cp .env_sample .env
$ docker-compose up -d
$ docker-compose exec django ./manage.py migrate
$ docker-compose exec django ./manage.py generate_data
$ docker-compose exec django ./manage.py collectstatic --noinput

You can now login as username "admin" with password "admin" at http://localhost:8000

If you ever need to reset the database, use the script ./reset_db.sh

Running tests

# Non "end to end tests"
$ docker-compose exec django py.test -m "not e2e"

# "End to end tests" (a shell script to launch a selenium docker container)
$ ./run_selenium_tests.sh

# If you are on Mac OSX it is easy to watch these tests, no need to install
# anything just do:
$ open vnc://0.0.0.0:5900

# And login with password "secret"

Example competitions

The repo comes with a couple examples that are used during tests:

v2 test data

src/tests/functional/test_files/submission.zip
src/tests/functional/test_files/competition.zip

v1.5 legacy test data

src/tests/functional/test_files/submission15.zip
src/tests/functional/test_files/competition15.zip

Other Codalab Competition examples

https://github.com/codalab/competition-examples/tree/master/v2/

Building compute worker

To build the normal image:

docker build -t codalab/competitions-v2-compute-worker:latest -f Dockerfile.compute_worker .

To build the GPU version:

docker build -t codalab/competitions-v2-compute-worker:nvidia -f Dockerfile.compute_worker_gpu .

Updating the image

docker push codalab/competitions-v2-compute-worker

Worker setup

# install docker
$ curl https://get.docker.com | sudo sh
$ sudo usermod -aG docker $USER

# >>> reconnect <<<

Start CPU worker

Make a file .env and put this in it:

# Queue URL
BROKER_URL=
   
    

# Location to store submissions/cache -- absolute path!
HOST_DIRECTORY=/your/path/to/codabench/storage

# If SSL is enabled, then uncomment the following line
#BROKER_USE_SSL=True

   

NOTE /your/path/to/codabench -- this path needs to be volumed into /codabench on the worker, as you can see below.

$ docker run \
    -v /your/path/to/codabench/storage:/codabench \
    -v /var/run/docker.sock:/var/run/docker.sock \
    -d \
    --env-file .env \
    --restart unless-stopped \
    --log-opt max-size=50m \
    --log-opt max-file=3 \
    codalab/competitions-v2-compute-worker:latest 

Start GPU worker

nvidia installation instructions

$ nvidia-docker run \
    -v /your/path/to/codabench/storage:/codabench \
    -v /var/run/docker.sock:/var/run/docker.sock \
    -v /var/lib/nvidia-docker/nvidia-docker.sock:/var/lib/nvidia-docker/nvidia-docker.sock \
    -d \
    --env-file .env \
    --restart unless-stopped \
    --log-opt max-size=50m \
    --log-opt max-file=3 \
    codalab/competitions-v2-compute-worker:nvidia 

Worker management

Outside of docker containers install Fabric like so:

pip install fab-classic==1.17.0

Create a server_config.yaml in the root of this repository using:

cp server_config_sample.yaml server_config.yaml

Below is an example server_config.yaml that defines 2 roles comp-gpu and comp-cpu, one with gpu style workers (is_gpu and the nvidia docker_image) and one with cpu style workers

comp-gpu:
  hosts:
    - [email protected]
    - [email protected]
  broker_url: pyamqp://user:[email protected]:port/vhost-gpu
  is_gpu: true
  docker_image: codalab/competitions-v2-compute-worker:nvidia

comp-cpu:
  hosts:
    - [email protected]
  broker_url: pyamqp://user:[email protected]:port/vhost-cpu
  is_gpu: false
  docker_image: codalab/competitions-v2-compute-worker:latest

You can of course create your own docker_image and specify it here.

You can execute commands against a role:

❯ fab -R comp-gpu status
..
[[email protected]] out: CONTAINER ID        IMAGE                                           COMMAND                  CREATED             STATUS              PORTS               NAMES
[[email protected]] out: 1d318268bee1        codalab/competitions-v2-compute-worker:nvidia   "/bin/sh -c 'celery …"   2 hours ago         Up 2 hours                              hardcore_greider
..

❯ fab -R comp-gpu update
..
(updates workers)

See available commands with fab -l

Owner
CodaLab
CodaLab
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

PhaseGuidedControl The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be

X-Mechanics 12 Oct 21, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility

PatchMatch-RL: Deep MVS with Pixelwise Depth, Normal, and Visibility Jae Yong Lee, Joseph DeGol, Chuhang Zou, Derek Hoiem Installation To install nece

31 Apr 19, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022