competitions-v2

Overview

Codabench

(formerly Codalab Competitions v2)

Installation

$ cp .env_sample .env
$ docker-compose up -d
$ docker-compose exec django ./manage.py migrate
$ docker-compose exec django ./manage.py generate_data
$ docker-compose exec django ./manage.py collectstatic --noinput

You can now login as username "admin" with password "admin" at http://localhost:8000

If you ever need to reset the database, use the script ./reset_db.sh

Running tests

# Non "end to end tests"
$ docker-compose exec django py.test -m "not e2e"

# "End to end tests" (a shell script to launch a selenium docker container)
$ ./run_selenium_tests.sh

# If you are on Mac OSX it is easy to watch these tests, no need to install
# anything just do:
$ open vnc://0.0.0.0:5900

# And login with password "secret"

Example competitions

The repo comes with a couple examples that are used during tests:

v2 test data

src/tests/functional/test_files/submission.zip
src/tests/functional/test_files/competition.zip

v1.5 legacy test data

src/tests/functional/test_files/submission15.zip
src/tests/functional/test_files/competition15.zip

Other Codalab Competition examples

https://github.com/codalab/competition-examples/tree/master/v2/

Building compute worker

To build the normal image:

docker build -t codalab/competitions-v2-compute-worker:latest -f Dockerfile.compute_worker .

To build the GPU version:

docker build -t codalab/competitions-v2-compute-worker:nvidia -f Dockerfile.compute_worker_gpu .

Updating the image

docker push codalab/competitions-v2-compute-worker

Worker setup

# install docker
$ curl https://get.docker.com | sudo sh
$ sudo usermod -aG docker $USER

# >>> reconnect <<<

Start CPU worker

Make a file .env and put this in it:

# Queue URL
BROKER_URL=
   
    

# Location to store submissions/cache -- absolute path!
HOST_DIRECTORY=/your/path/to/codabench/storage

# If SSL is enabled, then uncomment the following line
#BROKER_USE_SSL=True

   

NOTE /your/path/to/codabench -- this path needs to be volumed into /codabench on the worker, as you can see below.

$ docker run \
    -v /your/path/to/codabench/storage:/codabench \
    -v /var/run/docker.sock:/var/run/docker.sock \
    -d \
    --env-file .env \
    --restart unless-stopped \
    --log-opt max-size=50m \
    --log-opt max-file=3 \
    codalab/competitions-v2-compute-worker:latest 

Start GPU worker

nvidia installation instructions

$ nvidia-docker run \
    -v /your/path/to/codabench/storage:/codabench \
    -v /var/run/docker.sock:/var/run/docker.sock \
    -v /var/lib/nvidia-docker/nvidia-docker.sock:/var/lib/nvidia-docker/nvidia-docker.sock \
    -d \
    --env-file .env \
    --restart unless-stopped \
    --log-opt max-size=50m \
    --log-opt max-file=3 \
    codalab/competitions-v2-compute-worker:nvidia 

Worker management

Outside of docker containers install Fabric like so:

pip install fab-classic==1.17.0

Create a server_config.yaml in the root of this repository using:

cp server_config_sample.yaml server_config.yaml

Below is an example server_config.yaml that defines 2 roles comp-gpu and comp-cpu, one with gpu style workers (is_gpu and the nvidia docker_image) and one with cpu style workers

comp-gpu:
  hosts:
    - [email protected]
    - [email protected]
  broker_url: pyamqp://user:[email protected]:port/vhost-gpu
  is_gpu: true
  docker_image: codalab/competitions-v2-compute-worker:nvidia

comp-cpu:
  hosts:
    - [email protected]
  broker_url: pyamqp://user:[email protected]:port/vhost-cpu
  is_gpu: false
  docker_image: codalab/competitions-v2-compute-worker:latest

You can of course create your own docker_image and specify it here.

You can execute commands against a role:

❯ fab -R comp-gpu status
..
[[email protected]] out: CONTAINER ID        IMAGE                                           COMMAND                  CREATED             STATUS              PORTS               NAMES
[[email protected]] out: 1d318268bee1        codalab/competitions-v2-compute-worker:nvidia   "/bin/sh -c 'celery …"   2 hours ago         Up 2 hours                              hardcore_greider
..

❯ fab -R comp-gpu update
..
(updates workers)

See available commands with fab -l

Owner
CodaLab
CodaLab
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022