[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Related tags

Deep LearningTRACE
Overview

Target Adaptive Context Aggregation for Video Scene Graph Generation

This is a PyTorch implementation for Target Adaptive Context Aggregation for Video Scene Graph Generation.

Requirements

  • PyTorch >= 1.2 (Mine 1.7.1 (CUDA 10.1))
  • torchvision >= 0.4 (Mine 0.8.2 (CUDA 10.1))
  • cython
  • matplotlib
  • numpy
  • scipy
  • opencv
  • pyyaml
  • packaging
  • pycocotools
  • tensorboardX
  • tqdm
  • pillow
  • scikit-image
  • h5py
  • yacs
  • ninja
  • overrides
  • mmcv

Compilation

Compile the CUDA code in the Detectron submodule and in the repo:

# ROOT=path/to/cloned/repository
cd $ROOT/Detectron_pytorch/lib
sh make.sh
cd $ROOT/lib
sh make.sh

Data Preparation

Download Datasets

Download links: VidVRD and AG.

Create directories for datasets. The directories for ./data/ should look like:

|-- data
|   |-- ag
|   |-- vidvrd
|   |-- obj_embed

where ag and vidvrd are for AG and VidVRD datasets, and obj_embed is for GloVe, the weights of pre-trained word vectors. The final directories for GloVe should look like:

|-- obj_embed
|   |-- glove.6B.200d.pt
|   |-- glove.6B.300d.pt
|   |-- glove.6B.300d.txt
|   |-- glove.6B.200d.txt
|   |-- glove.6B.100d.txt
|   |-- glove.6B.50d.txt
|   |-- glove.6B.300d

AG

Put the .mp4 files into ./data/ag/videos/. Put the annotations into ./data/ag/annotations/.

The final directories for VidVRD dataset should look like:

|-- ag
|   |-- annotations
|   |   |-- object_classes.txt
|   |   |-- ...
|   |-- videos
|   |   |-- ....mp4
|   |-- Charades_annotations

VidVRD

Put the .mp4 files into ./data/vidvrd/videos/. Put the three documents test, train and videos from the vidvrd-annoataions into ./data/vidvrd/annotations/.

Download precomputed precomputed features, model and detected relations from here (or here). Extract features and models into ./data/vidvrd/.

The final directories for VidVRD dataset should look like:

|-- vidvrd
|   |-- annotations
|   |   |-- test
|   |   |-- train
|   |   |-- videos
|   |   |-- predicate.txt
|   |   |-- object.txt
|   |   |-- ...
|   |-- features
|   |   |-- relation
|   |   |-- traj_cls
|   |   |-- traj_cls_gt
|   |-- models
|   |   |-- baseline_setting.json
|   |   |-- ...
|   |-- videos
|   |   |-- ILSVRC2015_train_00005003.mp4
|   |   |-- ...

Change the format of annotations for AG and VidVRD

# ROOT=path/to/cloned/repository
cd $ROOT

python tools/rename_ag.py

python tools/rename_vidvrd_anno.py

python tools/get_vidvrd_pretrained_rois.py --out_rpath pre_processed_boxes_gt_dense_more --rpath traj_cls_gt

python tools/get_vidvrd_pretrained_rois.py --out_rpath pre_processed_boxes_dense_more

Dump frames

Our ffmpeg version is 4.2.2-0york0~16.04 so using --ignore_editlist to avoid some frames being ignored. The jpg format saves the drive space.

Dump the annotated frames for AG and VidVRD.

python tools/dump_frames.py --ignore_editlist

python tools/dump_frames.py --ignore_editlist --video_dir data/vidvrd/videos --frame_dir data/vidvrd/frames --frame_list_file val_fname_list.json,train_fname_list.json --annotation_dir data/vidvrd/annotations --st_id 0

Dump the sampled high quality frames for AG and VidVRD.

python tools/dump_frames.py --frame_dir data/ag/sampled_frames --ignore_editlist --frames_store_type jpg --high_quality --sampled_frames

python tools/dump_frames.py --ignore_editlist --video_dir data/vidvrd/videos --frame_dir data/vidvrd/sampled_frames --frame_list_file val_fname_list.json,train_fname_list.json --annotation_dir data/vidvrd/annotations --frames_store_type jpg --high_quality --sampled_frames --st_id 0

If you want to dump all frames with jpg format.

python tools/dump_frames.py --all_frames --frame_dir data/ag/all_frames --ignore_editlist --frames_store_type jpg

Get classes in json format for AG

# ROOT=path/to/cloned/repository
cd $ROOT
python txt2json.py

Get Charades train/test split for AG

Download Charades annotations and extract the annotations into ./data/ag/Charades_annotations/. Then run,

# ROOT=path/to/cloned/repository
cd $ROOT
python tools/dataset_split.py

Pretrained Models

Download model weights from here.

  • pretrained object detection
  • TRACE trained on VidVRD in detection_models/vidvrd/trained_rel
  • TRACE trained on AG in detection_models/ag/trained_rel

Performance

VidVrd, gt box

Method mAP [email protected] [email protected]
TRACE 30.6 19.3 24.6

gt_vidvrd

VidVrd, detected box

Method mAP [email protected] [email protected]
TRACE 16.3 9.2 11.2

det_vidvrd

AG, detected box

det_ag

Training Relationship Detection Models

VidVRD

# ROOT=path/to/cloned/repository
cd $ROOT

CUDA_VISIBLE_DEVICES=0 python tools/train_net_step_rel.py --dataset vidvrd --cfg configs/vidvrd/vidvrd_res101xi3d50_all_boxes_sample_train_flip_dc5_2d_new.yaml --nw 8 --use_tfboard --disp_interval 20 --o SGD --lr 0.025

AG

# ROOT=path/to/cloned/repository
cd $ROOT

CUDA_VISIBLE_DEVICES=0 python tools/train_net_step_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --nw 8 --use_tfboard --disp_interval 20 --o SGD --lr 0.01

Evaluating Relationship Detection Models

VidVRD

evaluation for gt boxes

CUDA_VISIBLE_DEVICES=1,2,3,4,5,6,7 python tools/test_net_rel.py --dataset vidvrd --cfg configs/vidvrd/vidvrd_res101xi3d50_gt_boxes_dc5_2d_new.yaml --load_ckpt Outputs/vidvrd_res101xi3d50_all_boxes_sample_train_flip_dc5_2d_new/Aug01-16-20-06_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step12999.pth --output_dir Outputs/vidvrd_new101 --do_val --multi-gpu-testing

python tools/transform_vidvrd_results.py --input_dir Outputs/vidvrd_new101 --output_dir Outputs/vidvrd_new101 --is_gt_traj

python tools/test_vidvrd.py --prediction Outputs/vidvrd_new101/baseline_relation_prediction.json --groundtruth data/vidvrd/annotations/test_gt.json

evaluation for detected boxes

CUDA_VISIBLE_DEVICES=1 python tools/test_net_rel.py --dataset vidvrd --cfg configs/vidvrd/vidvrd_res101xi3d50_pred_boxes_flip_dc5_2d_new.yaml --load_ckpt Outputs/vidvrd_res101xi3d50_all_boxes_sample_train_flip_dc5_2d_new/Aug01-16-20-06_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step12999.pth --output_dir Outputs/vidvrd_new101_det2 --do_val

python tools/transform_vidvrd_results.py --input_dir Outputs/vidvrd_new101_det2 --output_dir Outputs/vidvrd_new101_det2

python tools/test_vidvrd.py --prediction Outputs/vidvrd_new101_det2/baseline_relation_prediction.json --groundtruth data/vidvrd/annotations/test_gt.json

AG

evaluation for detected boxes, Recalls (SGDet)

CUDA_VISIBLE_DEVICES=4 python tools/test_net_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --load_ckpt Outputs/res101xi3d50_dc5_2d/Nov01-21-50-49_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step177329.pth --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --do_val

#evaluation for detected boxes, mRecalls
python tools/visualize.py  --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --num 60000 --no_do_vis --rel_class_recall

evaluation for detected boxes, mAP_{rel}

CUDA_VISIBLE_DEVICES=4 python tools/test_net_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --load_ckpt Outputs/res101xi3d50_dc5_2d/Nov01-21-50-49_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step177329.pth --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --do_val --eva_map --topk 50

evaluation for gt boxes, Recalls (SGCls)

CUDA_VISIBLE_DEVICES=4 python tools/test_net_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --load_ckpt Outputs/res101xi3d50_dc5_2d/Nov01-21-50-49_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step177329.pth --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --do_val --use_gt_boxes

#evaluation for detected boxes, mRecalls
python tools/visualize.py  --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --num 60000 --no_do_vis --rel_class_recall

evaluation for gt boxes, gt object labels, Recalls (PredCls)

CUDA_VISIBLE_DEVICES=4 python tools/test_net_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --load_ckpt Outputs/res101xi3d50_dc5_2d/Nov01-21-50-49_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step177329.pth --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --do_val --use_gt_boxes --use_gt_labels

#evaluation for detected boxes, mRecalls
python tools/visualize.py  --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --num 60000 --no_do_vis --rel_class_recall

Hint

  • We apply the dilation convolution in I3D now, but observe a gridding effect in temporal feature maps.

Acknowledgements

This project is built on top of ContrastiveLosses4VRD, ActionGenome and VidVRD-helper. The corresponding papers are Graphical Contrastive Losses for Scene Graph Parsing, Action Genome: Actions as Compositions of Spatio-temporal Scene Graphs and Video Visual Relation Detection.

Citing

If you use this code in your research, please use the following BibTeX entry.

@inproceedings{Target_Adaptive_Context_Aggregation_for_Video_Scene_Graph_Generation,
  author    = {Yao Teng and
               Limin Wang and
               Zhifeng Li and
               Gangshan Wu},
  title     = {Target Adaptive Context Aggregation for Video Scene Graph Generation},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages     = {13688--13697},
  year      = {2021}
}
Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022