Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

Overview

ConvNeXt Tensorflow

This is unofficial tensorflow keras implementation of ConvNeXt.
Its based on official PyTorch implementation.

Pre-trained Models

name resolution pretrain [email protected] #params FLOPs model
convnext_tiny_224 224x224 ImageNet-1K 82.1 28M 4.5G github
convnext_small_224 224x224 ImageNet-1K 83.1 50M 8.7G github
convnext_base_224 224x224 ImageNet-21K-1K 85.8 89M 15.4G github
convnext_base_384 384x384 ImageNet-21K-1K 86.8 89M 45.0G github
convnext_large_224 224x224 ImageNet-21K-1K 86.6 198M 34.4G github
convnext_large_384 384x384 ImageNet-21K-1K 87.5 198M 101.0G github
convnext_xlarge_224 224x224 ImageNet-21K-1K 87.0 350M 60.9G github
convnext_xlarge_384 384x384 ImageNet-21K-1K 87.8 350M 179.0G github

Note

I've ported only ImageNet-21K-1K weights for base, large and xlarge models.
If you want to convert another pretrained weight in official repo, you can refer to this script or just let me know.

Examples

import tensorflow as tf
from models.convnext_tf import create_model

x = tf.zeros((1, 224, 224, 3), dtype=tf.float32)

model = create_model('convnext_tiny_224', input_shape=(224, 224), pretrained=True)
out = model(x) # (1, 1000)

model = create_model('convnext_tiny_224', input_shape=(224, 224), num_classes=1, pretrained=True)
out = model(x) # (1, 1)

model = create_model('convnext_tiny_224', input_shape=(224, 224), include_top=False, pretrained=True)
out = model(x) # (1, 16, 16, 768)

Reference

https://github.com/facebookresearch/ConvNeXt
https://github.com/rishigami/Swin-Transformer-TF

You might also like...
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Implementation of ConvMixer in TensorFlow and Keras
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

A Keras implementation of YOLOv4 (Tensorflow backend)
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

Human head pose estimation using Keras over TensorFlow.
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Hyperparameter Optimization for TensorFlow, Keras and PyTorch
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Comments
  • Low accuracy on ImageNet1K validation

    Low accuracy on ImageNet1K validation

    I'm using your TF-converted model (tiny) and testing on ImageNet 1K validation images, but I'm getting 78% accuracy instead of the officially published 82%.

    Do you think that a 4 percent drop could be because of Torch/Tensorflow difference? Another converted model (https://github.com/sayakpaul/ConvNeXt-TF) attains 81% and the only difference between you and sayakpaul is the implementation of depthwise convolution. Have you tested your model on validation and if so, can you share the steps so that I could figure out the problem?

    opened by app2scale 2
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
Pytorch Lightning 1.2k Jan 06, 2023
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023