ConvNeXt Tensorflow
This is unofficial tensorflow keras implementation of ConvNeXt.
Its based on official PyTorch implementation.
Pre-trained Models
name | resolution | pretrain | [email protected] | #params | FLOPs | model |
---|---|---|---|---|---|---|
convnext_tiny_224 |
224x224 | ImageNet-1K | 82.1 | 28M | 4.5G | github |
convnext_small_224 |
224x224 | ImageNet-1K | 83.1 | 50M | 8.7G | github |
convnext_base_224 |
224x224 | ImageNet-21K-1K | 85.8 | 89M | 15.4G | github |
convnext_base_384 |
384x384 | ImageNet-21K-1K | 86.8 | 89M | 45.0G | github |
convnext_large_224 |
224x224 | ImageNet-21K-1K | 86.6 | 198M | 34.4G | github |
convnext_large_384 |
384x384 | ImageNet-21K-1K | 87.5 | 198M | 101.0G | github |
convnext_xlarge_224 |
224x224 | ImageNet-21K-1K | 87.0 | 350M | 60.9G | github |
convnext_xlarge_384 |
384x384 | ImageNet-21K-1K | 87.8 | 350M | 179.0G | github |
Note
I've ported only ImageNet-21K-1K weights for base, large and xlarge models.
If you want to convert another pretrained weight in official repo, you can refer to this script or just let me know.
Examples
import tensorflow as tf
from models.convnext_tf import create_model
x = tf.zeros((1, 224, 224, 3), dtype=tf.float32)
model = create_model('convnext_tiny_224', input_shape=(224, 224), pretrained=True)
out = model(x) # (1, 1000)
model = create_model('convnext_tiny_224', input_shape=(224, 224), num_classes=1, pretrained=True)
out = model(x) # (1, 1)
model = create_model('convnext_tiny_224', input_shape=(224, 224), include_top=False, pretrained=True)
out = model(x) # (1, 16, 16, 768)
Reference
https://github.com/facebookresearch/ConvNeXt
https://github.com/rishigami/Swin-Transformer-TF