Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

Overview

E(n)-Equivariant Transformer (wip)

Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant Graph Neural Network with attention.

Install

$ pip install En-transformer

Usage

import torch
from en_transformer import EnTransformer

model = EnTransformer(
    dim = 512,
    depth = 4,
    dim_head = 64,
    heads = 8,
    edge_dim = 4,
    fourier_features = 2
)

feats = torch.randn(1, 16, 512)
coors = torch.randn(1, 16, 3)
edges = torch.randn(1, 16, 16, 4)

feats, coors = model(feats, coors, edges)  # (1, 16, 512), (1, 16, 3)

Todo

  • masking
  • neighborhoods by radius

Citations

@misc{satorras2021en,
    title 	= {E(n) Equivariant Graph Neural Networks}, 
    author 	= {Victor Garcia Satorras and Emiel Hoogeboom and Max Welling},
    year 	= {2021},
    eprint 	= {2102.09844},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • Checkpoint sequential segments should equal number of layers instead of 1?

    Checkpoint sequential segments should equal number of layers instead of 1?

    https://github.com/lucidrains/En-transformer/blob/a37e635d93a322cafdaaf829397c601350b23e5b/en_transformer/en_transformer.py#L527

    Looking at the source code here: https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html#checkpoint_sequential

    opened by aced125 2
  • On rotary embeddings

    On rotary embeddings

    Hi @lucidrains, thank you for your amazing work; big fan! I had a quick question on the usage of this repository.

    Based on my understanding, rotary embeddings are a drop-in replacement for the original sinusoidal or learnt PEs in Transformers for sequential data, as in NLP or other temporal applications. If my application is not on sequential data, is there a reason why I should still use rotary embeddings?

    E.g. for molecular datasets such as QM9 (from the En-GNNs paper), would it make sense to have rotary embeddings?

    opened by chaitjo 1
  • Is this line required?

    Is this line required?

    https://github.com/lucidrains/En-transformer/blob/7247e258fab953b2a8b5a73b8dfdfb72910711f8/en_transformer/en_transformer.py#L159

    Is this line required? Does line 157, two lines above, make this line redundant?

    opened by aced125 1
  • Performance drop with checkpointing update

    Performance drop with checkpointing update

    I see a drop in performance (higher loss) when I update checkpointing from checkpoint_sequential(self.layers, 1, inp) to checkpoint_sequential(self.layers, len(self.layers), inp). Is this expected?

    opened by heiidii 0
  • varying number of nodes

    varying number of nodes

    @lucidrains Thank you for your efficient implementation. I was wondering how to use this implementation for the dataset when the number of nodes in each graph is not the same? For example, the datasets of small molecules.

    opened by mohaiminul2810 1
  • Edge model/rep

    Edge model/rep

    Hi,

    Thank you for providing this version of the EnGNN model. This is not really an issue just a query. The original model as implemented here (https://github.com/vgsatorras/egnn) has 3 main steps per layer: edge_feat = self.edge_model(h[row], h[col], radial, edge_attr) coord = self.coord_model(coord, edge_index, coord_diff, edge_feat) h, agg = self.node_model(h, edge_index, edge_feat, node_attr) I am interested in the edge_feat and was wondering what would be an equivalent edge representation in your implementation. Line 335 in EnTransformer.py: qk = self.edge_mlp(qk) seems like the best candidate. Thanks, Pooja

    opened by heiidii 1
  • efficient implementation

    efficient implementation

    Hi, I wonder if relative distances and coordinates can be handled more efficiently using memory efficient attention as in " Self-attention Does Not Need O(n^2) Memory". It is straightforward for the scalar part.

    opened by amrhamedp 2
Releases(1.0.2)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023