Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Overview

Memformer - Pytorch

Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attention, learned efficiently through Memory-Replay BackPropagation (MRBP) through time.

Install

$ pip install memformer

Usage

Full encoder / decoder, as in the paper

import torch
from memformer import Memformer

model = Memformer(
    dim = 512,
    enc_num_tokens = 256,
    enc_depth = 2,
    enc_heads = 8,
    enc_max_seq_len = 1024,
    dec_num_tokens = 256,
    dec_depth = 2,
    dec_heads = 8,
    dec_max_seq_len = 1024,
    num_memory_slots = 128
)

src_seg_1 = torch.randint(0, 256, (1, 1024))
src_seg_2 = torch.randint(0, 256, (1, 1024))
src_seg_3 = torch.randint(0, 256, (1, 1024))

tgt = torch.randint(0, 256, (1, 1024))

enc_out1, mems1,    _ = model(src_seg_1) # (1, 1024, 512), (1, 128, 512), _
enc_out2, mems2,    _ = model(src_seg_2, mems = mems1)
enc_out3, mems3, loss = model(src_seg_3, tgt, mems = mems2)

loss.backward()

Encoder only

import torch
from memformer import Memformer

model = Memformer(
    dim = 512,
    enc_num_tokens = 256,
    enc_heads = 8,
    enc_depth = 2,
    enc_max_seq_len = 1024,
    num_memory_slots = 128,
    num_mem_updates = 2,
    encoder_only = True       # only use encoder, in which output is encoded output
)

src1 = torch.randint(0, 256, (1, 1024))
src2 = torch.randint(0, 256, (1, 1024))

enc1, mems1 = model(src1) # (1, 1024, 512), (1, 128, 512)
enc2, mems2 = model(src2, mems = mems1)

Memory Replay Back-Propagation

import torch
from memformer import Memformer, memory_replay_backprop

model = Memformer(
    dim = 512,
    num_memory_slots = 128,
    enc_num_tokens = 256,
    enc_depth = 2,
    enc_max_seq_len = 1024,
    dec_num_tokens = 256,
    dec_depth = 2,
    dec_max_seq_len = 1024
).cuda()

seq = torch.randint(0, 256, (1, 8192)).cuda()
seq_mask = torch.ones_like(seq).bool().cuda()

tgt = torch.randint(0, 256, (1, 512)).cuda()
tgt_mask = torch.ones_like(tgt).bool().cuda()

# will automatically split the source sequence to 8 segments
memory_replay_backprop(
    model,
    src = seq,
    tgt = tgt,
    src_mask = seq_mask,
    tgt_mask = tgt_mask
)

Citations

@inproceedings{
    anonymous2021memformer,
    title={Memformer: The Memory-Augmented Transformer},
    author={Anonymous},
    booktitle={Submitted to International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=_adSMszz_g9},
    note={under review}
}
You might also like...
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Styled Augmented Translation
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

DrQ-v2: Improved Data-Augmented Reinforcement Learning
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

 RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering
RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering Authors: Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou and

Comments
  • WIP - MemformerEncoder

    WIP - MemformerEncoder

    I´m always trying all your awesome work on transformers. My problem is NER on very large texts, with few examples.

    Memformer is the first one so far to converge faster and wield better accuracy than RNN encoders as LSTM, SRU and IndRNN It is ridiculously better than everything else I tested, congratulations @lucidrains 🥳

    I need to use the transformer as a Encoder in my pipeline, to feed a CRF layer. So I modified the code to accept an already embedded input, and to only do the Encode step.

    TODO:

    • [ ] Support Mask
    • [ ] Re-utilize code with Memformer class

    Is this within the scope of the project?

    opened by bratao 10
  • ETA on complete examples

    ETA on complete examples

    @lucidrains As I asked about the feedback-transformer, I was also wondering about this memformer implementation as I would love to try it. Any eta on any complete examples here? They will be much appreciated. Thanks.

    And similarly, I would love to see a simple example for custom line-by-line TXT datasets as well.

    Thank you again :)

    opened by asigalov61 0
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

MIXIAOXIN_HO 3 Nov 11, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

EDSR modelling A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repositor

Samuel Jackson 7 Nov 03, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022