TANL: Structured Prediction as Translation between Augmented Natural Languages

Related tags

Deep Learningtanl
Overview

TANL: Structured Prediction as Translation between Augmented Natural Languages

Code for the paper "Structured Prediction as Translation between Augmented Natural Languages" (ICLR 2021).

If you use this code, please cite the paper using the bibtex reference below.

@inproceedings{tanl,
    title={Structured Prediction as Translation between Augmented Natural Languages},
    author={Giovanni Paolini and Ben Athiwaratkun and Jason Krone and Jie Ma and Alessandro Achille and Rishita Anubhai and Cicero Nogueira dos Santos and Bing Xiang and Stefano Soatto},
    booktitle={9th International Conference on Learning Representations, {ICLR} 2021},
    year={2021},
}

Requirements

  • Python 3.6+
  • PyTorch (tested with version 1.7.1)
  • Transformers (tested with version 4.0.0)
  • NetworkX (tested with version 2.5, only used in coreference resolution)

You can install all required Python packages with pip install -r requirements.txt

Datasets

By default, datasets are expected to be in data/DATASET_NAME. Dataset-specific code is in datasets.py.

For example, the CoNLL04 and ADE datasets (joint entity and relation extraction) in the correct format can be downloaded using https://github.com/markus-eberts/spert/blob/master/scripts/fetch_datasets.sh. For other datasets, pre-processing and links are documented in the code.

Running the code

Use the following command: python run.py JOB

The JOB argument refers to a section of the config file, which by default is config.ini. A sample config file is provided, with settings that allow for a faster training and less memory usage than the settings used to obtain the final results in the paper.

For example, to replicate the paper's results on CoNLL04, have the following section in the config file:

[conll04_final]
datasets = conll04
model_name_or_path = t5-base
num_train_epochs = 200
max_seq_length = 256
max_seq_length_eval = 512
train_split = train,dev
per_device_train_batch_size = 8
per_device_eval_batch_size = 16
do_train = True
do_eval = False
do_predict = True
episodes = 1-10
num_beams = 8

Then run python run.py conll04_final. Note that the final results will differ slightly from the ones reported in the paper, due to small code changes and randomness.

Config arguments can be overwritten by command line arguments. For example: python run.py conll04_final --num_train_epochs 50.

Additional details

If do_train = True, the model is trained on the given train split (e.g., 'train') of the given datasets. The final weights and intermediate checkpoints are written in a directory such as experiments/conll04_final-t5-base-ep200-len256-b8-train, with one subdirectory per episode. Results in JSON format are also going to be saved there.

In every episode, the model is trained on a different (random) permutation of the training set. The random seed is given by the episode number, so that every episode always produces the same exact model.

Once a model is trained, it is possible to evaluate it without training again. For this, set do_train = False or (more easily) provide the -e command-line argument: python run.py conll04_final -e.

If do_eval = True, the model is evaluated on the 'dev' split. If do_predict = True, the model is evaluated on the 'test' split.

Arguments

The following are the most important command-line arguments for the run.py script. Run python run.py -h for the full list.

  • -c CONFIG_FILE: specify config file to use (default is config.ini)
  • -e: only run evaluation (overwrites the setting do_train in the config file)
  • -a: evaluate also intermediate checkpoints, in addition to the final model
  • -v : print results for each evaluation run
  • -g GPU: specify which GPU to use for evaluation

The following are the most important arguments for the config file. See the sample config file to understand the format.

  • datasets (str): comma-separated list of datasets for training
  • eval_datasets (str): comma-separated list of datasets for evaluation (default is the same as for training)
  • model_name_or_path (str): path to pretrained model or model identifier from huggingface.co/models (e.g. t5-base)
  • do_train (bool): whether to run training (default is False)
  • do_eval (bool): whether to run evaluation on the dev set (default is False)
  • do_predict (bool): whether to run evaluation on the test set (default is False)
  • train_split (str): comma-separated list of data splits for training (default is train)
  • num_train_epochs (int): number of train epochs
  • learning_rate (float): initial learning rate (default is 5e-4)
  • train_subset (float > 0 and <=1): portion of training data to effectively use during training (default is 1, i.e., use all training data)
  • per_device_train_batch_size (int): batch size per GPU during training (default is 8)
  • per_device_eval_batch_size (int): batch size during evaluation (default is 8; only one GPU is used for evaluation)
  • max_seq_length (int): maximum input sequence length after tokenization; longer sequences are truncated
  • max_output_seq_length (int): maximum output sequence length (default is max_seq_length)
  • max_seq_length_eval (int): maximum input sequence length for evaluation (default is max_seq_length)
  • max_output_seq_length_eval (int): maximum output sequence length for evaluation (default is max_output_seq_length or max_seq_length_eval or max_seq_length)
  • episodes (str): episodes to run (default is 0; an interval can be specified, such as 1-4; the episode number is used as the random seed)
  • num_beams (int): number of beams for beam search during generation (default is 1)
  • multitask (bool): if True, the name of the dataset is prepended to each input sentence (default is False)

See arguments.py and transformers.TrainingArguments for additional config arguments.

Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
TabNet for fastai

TabNet for fastai This is an adaptation of TabNet (Attention-based network for tabular data) for fastai (=2.0) library. The original paper https://ar

Mikhail Grankin 116 Oct 21, 2022
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022