Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Related tags

Deep Learningsvox2
Overview

Plenoxels: Radiance Fields without Neural Networks

Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa

UC Berkeley

Website and video: https://alexyu.net/plenoxels

arXiv: https://arxiv.org/abs/2112.05131

Note: This is a preliminary release. We have not carefully tested everything, but feel that it would be better to first put the code out there.

Also, despite the name, it's not strictly intended to be a successor of svox

Citation:

@misc{yu2021plenoxels,
      title={Plenoxels: Radiance Fields without Neural Networks}, 
      author={{Alex Yu and Sara Fridovich-Keil} and Matthew Tancik and Qinhong Chen and Benjamin Recht and Angjoo Kanazawa},
      year={2021},
      eprint={2112.05131},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

This contains the official optimization code. A JAX implementation is also available at https://github.com/sarafridov/plenoxels. However, note that the JAX version is currently feature-limited, running in about 1 hour per epoch and only supporting bounded scenes (at present).

Fast optimization

Overview

Setup

First create the virtualenv; we recommend using conda:

conda env create -f environment.yml
conda activate plenoxel

Then clone the repo and install the library at the root (svox2), which includes a CUDA extension.

If your CUDA toolkit is older than 11, then you will need to install CUB as follows: conda install -c bottler nvidiacub. Since CUDA 11, CUB is shipped with the toolkit.

To install the main library, simply run

pip install .

In the repo root directory.

Getting datasets

We have backends for NeRF-Blender, LLFF, NSVF, and CO3D dataset formats, and the dataset will be auto-detected. Please get the NeRF-synthetic and LLFF datasets from:

https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1

We provide a processed Tanks and temples dataset (with background) in NSVF format at: https://drive.google.com/file/d/1PD4oTP4F8jTtpjd_AQjCsL4h8iYFCyvO/view?usp=sharing

Note this data should be identical to that in NeRF++

Voxel Optimization (aka Training)

For training a single scene, see opt/opt.py. The launch script makes this easier.

Inside opt/, run ./launch.sh <exp_name> <GPU_id> <data_dir> -c <config>

Where <config> should be configs/syn.json for NeRF-synthetic scenes, configs/llff.json for forward-facing scenes, and configs/tnt.json for tanks and temples scenes, for example.

The dataset format will be auto-detected from data_dir. Checkpoints will be in ckpt/exp_name.

Evaluation

Use opt/render_imgs.py

Usage, (in opt/) python render_imgs.py <CHECKPOINT.npz> <data_dir>

By default this saves all frames, which is very slow. Add --no_imsave to avoid this.

Rendering a spiral

Use opt/render_imgs_circle.py

Usage, (in opt/) python render_imgs_circle.py <CHECKPOINT.npz> <data_dir>

Parallel task executor

We provide a parallel task executor based on the task manager from PlenOctrees to automatically schedule many tasks across sets of scenes or hyperparameters. This is used for evaluation, ablations, and hypertuning See opt/autotune.py. Configs in opt/tasks/*.json

For example, to automatically train and eval all synthetic scenes: you will need to change train_root and data_root in tasks/eval.json, then run:

python autotune.py -g '<space delimited GPU ids>' tasks/eval.json

For forward-facing scenes

python autotune.py -g '<space delimited GPU ids>' tasks/eval_ff.json

For Tanks and Temples scenes

python autotune.py -g '<space delimited GPU ids>' tasks/eval_tnt.json

Using a custom image set

First make sure you have colmap installed. Then

(in opt/) bash scripts/proc_colmap.sh <img_dir>

Where <img_dir> should be a directory directly containing png/jpg images from a normal perspective camera. For custom datasets we adopt a data format similar to that in NSVF https://github.com/facebookresearch/NSVF

You should be able to use this dataset directly afterwards. The format will be auto-detected.

To view the data use: python scripts/view_data.py <img_dir>

This should launch a server at localhost:8889

You may need to tune the TV. For forward-facing scenes, often making the TV weights 10x higher is helpful (configs/llff_hitv.json). For the real lego scene I used the config configs/custom.json.

Random tip: how to make pip install faster for native extensions

You may notice that this CUDA extension takes forever to install. A suggestion is using ninja. On Ubuntu, install it with sudo apt install ninja-build. Then set the environment variable MAX_JOBS to the number of CPUS to use in parallel (e.g. 12) in your shell startup script. This will enable parallel compilation and significantly improve iteration speed.

Owner
Alex Yu
Researcher at UC Berkeley
Alex Yu
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! ๐ŸŽ„ ๐ŸŽ… To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm ร…gren 5 Dec 29, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022