Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Overview

Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Alex Tamkin, Mike Wu, and Noah Goodman

Paper link: https://arxiv.org/abs/2010.07432

0) Background

Viewmaker networks are a new, more general method for self-supervised learning that enables pretraining with the same algorithm on a diverse range of different modalities—including images, speech, and sensor data.

Viewmaker networks learn a family of data transformations with a generative model, as opposed to prior approaches which use data transformations developed by domain experts through trial and error.

Viewmakers are trained adversarially with respect to the pretraining loss—this means they are compatible with many different pretraining objectives. We present results for SimCLR and InstDisc, but viewmakers are compatible with any view-based objective, including MoCo, BYOL, SimSiam, and SwAV.

Some example distortions learned for images (each frame is generated with a different random noise input to the viewmaker)

Image

1) Install Dependencies

We used the following PyTorch libraries for CUDA 10.1; you may have to adapt for your own CUDA version:

pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

Install other dependencies:

pip install -r requirements.txt

2) Running experiments

Start by running

source init_env.sh

Now, you can run experiments for the different modalities as follows:

scripts/run_sensor.py config/sensor/pretrain_viewmaker_pamap2_simclr.json --gpu-device 0

This command runs viewmaker pretraining on the Pamap2 wearable sensor dataset using GPU #0. (If you have a multi-GPU node, you can specify other GPUs.)

The scripts directory holds:

  • run_image.py: for pretraining and running linear evaluation on CIFAR-10
  • run_meta_transfer.py: for running linear evaluation on a range of transfer datasets, including many from MetaDataset
  • run_audio.py: for pretraining on LibriSpeech and running linear evaluation on a range of transfer datasets
  • run_sensor.py: for pretraining on Pamap2 and running transfer, supervised, and semi-supervised learning on different splits of Pamap2
  • eval_cifar10_c.py: for evaluating a linear evaluation model on the CIFAR-10-C dataset for assessing robustness to common corruptions

The config directory holds configuration files for the different experiments, specifying the hyperparameters from each experiment. The first field in every config file is exp_base which specifies the base directory to save experiment outputs, which you should change for your own setup.

You are responsible for downloading the datasets. Update the paths in src/datasets/root_paths.py.

Training curves and other metrics are logged using wandb.ai

Owner
Alex Tamkin
PhD at @stanfordnlp
Alex Tamkin
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
LBK 26 Dec 28, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022