The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

Overview

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv

SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

Overview

Requirements

We recommend using anaconda or miniconda for python. Our code has been tested with python=3.8 on linux.

To create a new environment with conda

conda create -n saint_env python=3.8
conda activate saint_env

We recommend installing the latest pytorch, torchvision, einops, pandas, wget, sklearn packages.

You can install them using

conda install pytorch torchvision -c pytorch
conda install -c conda-forge einops 
conda install -c conda-forge pandas 
conda install -c conda-forge python-wget 
conda install -c anaconda scikit-learn 

Make sure the following requirements are met

  • torch>=1.8.1
  • torchvision>=0.9.1

Optional

We used wandb to update our logs. But it is optional.

conda install -c conda-forge wandb 

Training & Evaluation

In each of our experiments, we use a single Nvidia GeForce RTX 2080Ti GPU.

First download the processed datasets from this link into the folder ./data

To train the model(s) in the paper, run this command:

python train.py  --dataset <dataset_name> --attentiontype <attention_type> 

Pretraining is useful when there are few training data samples. Sample code looks like this

python train.py  --dataset <dataset_name> --attentiontype <attention_type> --pretrain --pt_tasks <pretraining_task_touse> --pt_aug <augmentations_on_data_touse> --ssl_avail_y <Number_of_labeled_samples>

Train all 16 datasets by running bash files. train.sh for supervised learning and train_pt.sh for pretraining and semi-supervised learning

bash train.sh
bash train_pt.sh

Arguments

  • --dataset : Dataset name. We support only the 16 datasets discussed in the paper. Supported datasets are ['1995_income','bank_marketing','qsar_bio','online_shoppers','blastchar','htru2','shrutime','spambase','philippine','mnist','arcene','volkert','creditcard','arrhythmia','forest','kdd99']
  • --embedding_size : Size of the feature embeddings
  • --transformer_depth : Depth of the model. Number of stages.
  • --attention_heads : Number of attention heads in each Attention layer.
  • --cont_embeddings : Style of embedding continuous data.
  • --attentiontype : Variant of SAINT. 'col' refers to SAINT-s variant, 'row' is SAINT-i, and 'colrow' refers to SAINT.
  • --pretrain : To enable pretraining
  • --pt_tasks : Losses we want to use for pretraining. Multiple arguments can be passed.
  • --pt_aug : Types of data augmentations used in pretraining. Multiple arguments are allowed. We support only mixup and CutMix right now.
  • --ssl_avail_y : Number of labeled samples used in semi-supervised experiments. Default is 0, which means all samples are labeled and is supervised case.
  • --pt_projhead_style : Projection head style used in contrastive pipeline.
  • --nce_temp : Temperature used in contrastive loss function.
  • --active_log : To update the logs onto wandb. This is optional

Evaluation

We choose the best model by evaluating the model on validation dataset. The AUROC(for binary classification datasets) and Accuracy (for multiclass classification datasets) of the best model on test datasets is printed after training is completed. If wandb is enabled, they are logged to 'test_auroc_bestep', 'test_accuracy_bestep' variables.

Acknowledgements

We would like to thank the following public repo from which we borrowed various utilites.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Cite us

@article{somepalli2021saint,
  title={SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training},
  author={Somepalli, Gowthami and Goldblum, Micah and Schwarzschild, Avi and Bruss, C Bayan and Goldstein, Tom},
  journal={arXiv preprint arXiv:2106.01342},
  year={2021}
}

Owner
Gowthami Somepalli
Gowthami Somepalli
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Magisk module to enable hidden features on Android 12 Developer Preview 1.

Android 12 Extensions This is a Magisk module that enables hidden features on Android 12 Developer Preview 1. Features Scrolling screenshots Wallpaper

Danny Lin 384 Jan 06, 2023
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022