Estimating Example Difficulty using Variance of Gradients

Overview

Estimating Example Difficulty using Variance of Gradients

This repository contains source code necessary to reproduce some of the main results in the paper:

If you use this software, please consider citing:

@article{agarwal2020estimating, 
title={Estimating Example Difficulty using Variance of Gradients},
author={Agarwal, Chirag and Hooker, Sara},
journal={arXiv preprint arXiv:2008.11600},
year={2020}
}

1. Setup

Installing software

This repository is built using a combination of TensorFlow and PyTorch. You can install the necessary libraries by pip installing the requirements text file pip install -r ./requirements_tf.txt and pip install -r ./requirements_pytorch.txt

2. Usage

Toy experiment

toy_script.py is the script for running toy dataset experiment. You can analyze the training/testing data at diffferent stages of the training, viz. Early, Middle, and Late, using the flags split and mode. The vog_cal flag enables visualizing different versions of VOG scores such as the raw score, class normalized, or the absolute class normalized scores.

Examples

Running python3 toy_script.py --split test --mode early --vog_cal normalize generates the toy dataset decision boundary figure along with the relation between the perpendicular distance of individual points from the decision boundary and the VOG scores. The respective figures are:

Left: The visualization of the toy dataset decision boundary with the testing data points. The Multiple Layer Perceptron model achieves 100% training accuracy. Right: The scatter plot between the Variance of Gradients (VoGs) for each testing data point and their perpendicular distance shows that higher scores pertain to the most challenging examples (closest to the decision boundary)

ImageNet

The main scripts for the ImageNet experiments are in the ./imagenet/ folder.

  1. Before calculating the VOG scores you would need to store the gradients of the respective images in the ./scripts/train.txt/ file using model snapshots. For demonstration purpose, we have shared the model weights of the late stage, i.e. steps 30024, 31275, and 32000. Now, for example, we want to store the gradients for the imagenet dataset (stored as /imagenet_dir/train) at snapshot 32000, we run the shell script train_get_gradients.sh like:

source train_get_gradients.sh 32000 ./imagenet/train_results/ 9 ./scripts/train.txt/

  1. For this repo, we have generated the gradients for 100 random images for the late stage training process and stored the results in ./imagenet/train_results/. To generate the error rate performance at different VOG deciles run train_visualize_grad.py using the following command. python train_visualize_grad.py

On analyzing the VOG score for a particular class (e.g. below are magpie and pop bottle) in the late training stage, we found two unique groups of images. In this work, we hypothesize that examples that a model has difficulty learning (images on the right) will exhibit higher variance in gradient updates over the course of training (. On the other hand, the gradient updates for the relatively easier examples are expected to stabilize early in training and converge to a narrow range of values.

Each 5×5 grid shows the top-25 ImageNet training-set images with the lowest (left column) and highest (right column) VOG scores for the class magpie and pop bottle with their predicted labels below the image. Training set images with higher VOG scores (b) tend to feature zoomed-in images with atypical color schemes and vantage points.

4. Licenses

Note that the code in this repository is licensed under MIT License, but, the pre-trained condition models used by the code have their own licenses. Please carefully check them before use.

5. Questions?

If you have questions/suggestions, please feel free to email or create github issues.

Owner
Chirag Agarwal
Researching the Unknown
Chirag Agarwal
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023