Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

Related tags

Deep LearningGD-Thief
Overview

GD-Thief

Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includes includes all shared files, all files from shared drives, and all files from domain drives that the target has access to.

HOW TO

For an illustrated walkthrough, check out my blog post.

Create a new Google Cloud Platform (GCP) project

Steps to get the Google API Access Token needed for connecting to the API

  1. Create a burner Gmail/google account
  2. Login to said account
  3. Navigate to the Google Cloud Console
  4. Next to "Google Cloud Platform," click the "Select a project" Down arrow. A dialog listing current projects appears.
  5. Click New Project. The New Project screen appears.
  6. In the Project Name field, enter a descriptive name for your project.
  7. (Optional) To edit the Project ID, click Edit. The project ID can't be changed after the project is created, so choose an ID that meets your needs for the lifetime of the project.
  8. Click Create. The console navigates to the Dashboard page and your project is created within a few minutes.

Enable a Google Workspace API

  1. Next to "Google Cloud Platform," click the Down arrow and select the project you just created from the dropdown list.
  2. In the top-left corner, click Menu > APIs & Services.
  3. Click Enable APIs and Services. The "Welcome to API Library" page appears.
  4. In the search field, enter "Google Drive".
  5. Click the Google Drive API. The API page appears.
  6. Click Enable. The Overview page appears.

Configure OAuth Consent screen

  1. On the left side of the Overview page click Credentials. The credential page for your project appears.
  2. Click Configure Consent Screen. The "OAuth consent screen" screen appears.
  3. Click the External user type for your app.
  4. Click Create. A second "OAuth consent screen" screen appears.
  5. Fill out the form:
    • Enter an Application Name in the App name field
    • Enter your burner email address in the User support email field.
    • Enter your burner email address in the Developer contact information field.
  6. Click Save and Continue. The "Scopes" page appears.
  7. Click Add or Remove Scopes. The "Update selected scopes" page appears.
  8. Check all of the Google Drive scopes to use in the app. GD scopes cover 2 pages, so click the next page and ensure that you check them all.
  9. Click Update. A list of scopes for your app appears.
  10. Click Save and Continue. The "Edit app registration" page appears.
  11. Click Save and Continue. The "OAuth consent screen" appears.

Create a credential

  1. Click Create Credentials and select OAuth client ID. The "Create OAuth client ID" page appears.
  2. Click the Application type drop-down list and select Desktop Application.
  3. In the name field, type a name for the credential. This name is only shown in the Cloud Console.
  4. Click Create. The OAuth client created screen appears. This screen shows the Client ID and Client secret.
  5. Click OK. The newly created credential appears under "OAuth 2.0 Client IDs."
  6. Click the download button to the right of the newly-created OAuth 2.0 Client ID. This copies a client secret JSON file to your desktop. Note the location of this file.
  7. Rename the client secret JSON file to "credentials.json" and move it to the gd_thief/credentials directory.

Add the victim's Google account to the Application's Test Users

In order to be able to run this script against the victim, you will need to add their Google account to the Test Users list for the App you just created

  1. On the Left side of the screen click OAuth consent screen. You "OAuth Consent Screen" page appears.
  2. Under Test Users click the Add Users button.
  3. Enter the victim's Gmail address in the email address field.
  4. Click the save button.

First Time running gd_thief

Upon gaining access to a Target's Google account, you can run gd_thief

  1. The first time running gd_thief, the script opens a new window prompting you to authorize access to your data:
    1. If you are signed in to multiple Google accounts, you are asked to select one account to use for the authorization. Make sure you select the victim's Google account

Dependencies

Google API Libraries: pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib

Usage:

usage:
python3 gd_thief.py [-h] -m [{dlAll, dlDict[-d <DICTIONARY FILE PATH>]}
	[-t <THREAD COUNT>]

help:

This Module will connect to Google's API using an access token and exfiltrate files
from a target's Google Drive.  It will output exfiltrated files to the ./loot directory

arguments:
        -m [{dlAll, dlDict}],
                --mode [{dlAll, dlDict}]
                The mode of file download
                Can be "dlAll", "dlDict [-d <DICTIONARY FILE PATH>]", or... (More options to come)

optional arguments:
        -d <DICTIONARY FILE PATH>, --dict <DICTIONARY FILE PATH>
                        Path to the dictionary file. Mandatory with download mode"-m, --mode dlDict"
                        You can use the provided dictionary, per example: "-d ./dictionaries/secrets-keywords.txt"
        -t <THREAD COUNT>, --threads <THREAD COUNT>
                        Number of threads. (Too many could exceeed Google's rate limit threshold)

        -h, --help
                show this help message and exit

NOTES:

  • Setting the thread count too high will cause an HTTP 403 "Rate limit exceeded," indicating that the user has reached Google Drive API's maximum request rate.
    • The thread count limit vaires from machine to machine. I've set it to 250 on a Macbook Pro, while 250 was too high for my Windows 10 Desktop

REFERENCES:

TODO:

  1. Threading
  2. Error Checking
  3. Wordlist file content search and download
  4. File type download
  5. Snort Sensitive Data regex file content search and download
  6. Optical Character Recognition (OCR)

Special Thanks:

Thank you to my good friend Cedric Owens for helping me with the threading piece!

Owner
Antonio Piazza
Antonio Piazza
Refactoring dalle-pytorch and taming-transformers for TPU VM

Text-to-Image Translation (DALL-E) for TPU in Pytorch Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning Requirements

Kim, Taehoon 61 Nov 07, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022