Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

Related tags

Deep LearningGD-Thief
Overview

GD-Thief

Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includes includes all shared files, all files from shared drives, and all files from domain drives that the target has access to.

HOW TO

For an illustrated walkthrough, check out my blog post.

Create a new Google Cloud Platform (GCP) project

Steps to get the Google API Access Token needed for connecting to the API

  1. Create a burner Gmail/google account
  2. Login to said account
  3. Navigate to the Google Cloud Console
  4. Next to "Google Cloud Platform," click the "Select a project" Down arrow. A dialog listing current projects appears.
  5. Click New Project. The New Project screen appears.
  6. In the Project Name field, enter a descriptive name for your project.
  7. (Optional) To edit the Project ID, click Edit. The project ID can't be changed after the project is created, so choose an ID that meets your needs for the lifetime of the project.
  8. Click Create. The console navigates to the Dashboard page and your project is created within a few minutes.

Enable a Google Workspace API

  1. Next to "Google Cloud Platform," click the Down arrow and select the project you just created from the dropdown list.
  2. In the top-left corner, click Menu > APIs & Services.
  3. Click Enable APIs and Services. The "Welcome to API Library" page appears.
  4. In the search field, enter "Google Drive".
  5. Click the Google Drive API. The API page appears.
  6. Click Enable. The Overview page appears.

Configure OAuth Consent screen

  1. On the left side of the Overview page click Credentials. The credential page for your project appears.
  2. Click Configure Consent Screen. The "OAuth consent screen" screen appears.
  3. Click the External user type for your app.
  4. Click Create. A second "OAuth consent screen" screen appears.
  5. Fill out the form:
    • Enter an Application Name in the App name field
    • Enter your burner email address in the User support email field.
    • Enter your burner email address in the Developer contact information field.
  6. Click Save and Continue. The "Scopes" page appears.
  7. Click Add or Remove Scopes. The "Update selected scopes" page appears.
  8. Check all of the Google Drive scopes to use in the app. GD scopes cover 2 pages, so click the next page and ensure that you check them all.
  9. Click Update. A list of scopes for your app appears.
  10. Click Save and Continue. The "Edit app registration" page appears.
  11. Click Save and Continue. The "OAuth consent screen" appears.

Create a credential

  1. Click Create Credentials and select OAuth client ID. The "Create OAuth client ID" page appears.
  2. Click the Application type drop-down list and select Desktop Application.
  3. In the name field, type a name for the credential. This name is only shown in the Cloud Console.
  4. Click Create. The OAuth client created screen appears. This screen shows the Client ID and Client secret.
  5. Click OK. The newly created credential appears under "OAuth 2.0 Client IDs."
  6. Click the download button to the right of the newly-created OAuth 2.0 Client ID. This copies a client secret JSON file to your desktop. Note the location of this file.
  7. Rename the client secret JSON file to "credentials.json" and move it to the gd_thief/credentials directory.

Add the victim's Google account to the Application's Test Users

In order to be able to run this script against the victim, you will need to add their Google account to the Test Users list for the App you just created

  1. On the Left side of the screen click OAuth consent screen. You "OAuth Consent Screen" page appears.
  2. Under Test Users click the Add Users button.
  3. Enter the victim's Gmail address in the email address field.
  4. Click the save button.

First Time running gd_thief

Upon gaining access to a Target's Google account, you can run gd_thief

  1. The first time running gd_thief, the script opens a new window prompting you to authorize access to your data:
    1. If you are signed in to multiple Google accounts, you are asked to select one account to use for the authorization. Make sure you select the victim's Google account

Dependencies

Google API Libraries: pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib

Usage:

usage:
python3 gd_thief.py [-h] -m [{dlAll, dlDict[-d <DICTIONARY FILE PATH>]}
	[-t <THREAD COUNT>]

help:

This Module will connect to Google's API using an access token and exfiltrate files
from a target's Google Drive.  It will output exfiltrated files to the ./loot directory

arguments:
        -m [{dlAll, dlDict}],
                --mode [{dlAll, dlDict}]
                The mode of file download
                Can be "dlAll", "dlDict [-d <DICTIONARY FILE PATH>]", or... (More options to come)

optional arguments:
        -d <DICTIONARY FILE PATH>, --dict <DICTIONARY FILE PATH>
                        Path to the dictionary file. Mandatory with download mode"-m, --mode dlDict"
                        You can use the provided dictionary, per example: "-d ./dictionaries/secrets-keywords.txt"
        -t <THREAD COUNT>, --threads <THREAD COUNT>
                        Number of threads. (Too many could exceeed Google's rate limit threshold)

        -h, --help
                show this help message and exit

NOTES:

  • Setting the thread count too high will cause an HTTP 403 "Rate limit exceeded," indicating that the user has reached Google Drive API's maximum request rate.
    • The thread count limit vaires from machine to machine. I've set it to 250 on a Macbook Pro, while 250 was too high for my Windows 10 Desktop

REFERENCES:

TODO:

  1. Threading
  2. Error Checking
  3. Wordlist file content search and download
  4. File type download
  5. Snort Sensitive Data regex file content search and download
  6. Optical Character Recognition (OCR)

Special Thanks:

Thank you to my good friend Cedric Owens for helping me with the threading piece!

Owner
Antonio Piazza
Antonio Piazza
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021