Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

Related tags

Deep LearningGD-Thief
Overview

GD-Thief

Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includes includes all shared files, all files from shared drives, and all files from domain drives that the target has access to.

HOW TO

For an illustrated walkthrough, check out my blog post.

Create a new Google Cloud Platform (GCP) project

Steps to get the Google API Access Token needed for connecting to the API

  1. Create a burner Gmail/google account
  2. Login to said account
  3. Navigate to the Google Cloud Console
  4. Next to "Google Cloud Platform," click the "Select a project" Down arrow. A dialog listing current projects appears.
  5. Click New Project. The New Project screen appears.
  6. In the Project Name field, enter a descriptive name for your project.
  7. (Optional) To edit the Project ID, click Edit. The project ID can't be changed after the project is created, so choose an ID that meets your needs for the lifetime of the project.
  8. Click Create. The console navigates to the Dashboard page and your project is created within a few minutes.

Enable a Google Workspace API

  1. Next to "Google Cloud Platform," click the Down arrow and select the project you just created from the dropdown list.
  2. In the top-left corner, click Menu > APIs & Services.
  3. Click Enable APIs and Services. The "Welcome to API Library" page appears.
  4. In the search field, enter "Google Drive".
  5. Click the Google Drive API. The API page appears.
  6. Click Enable. The Overview page appears.

Configure OAuth Consent screen

  1. On the left side of the Overview page click Credentials. The credential page for your project appears.
  2. Click Configure Consent Screen. The "OAuth consent screen" screen appears.
  3. Click the External user type for your app.
  4. Click Create. A second "OAuth consent screen" screen appears.
  5. Fill out the form:
    • Enter an Application Name in the App name field
    • Enter your burner email address in the User support email field.
    • Enter your burner email address in the Developer contact information field.
  6. Click Save and Continue. The "Scopes" page appears.
  7. Click Add or Remove Scopes. The "Update selected scopes" page appears.
  8. Check all of the Google Drive scopes to use in the app. GD scopes cover 2 pages, so click the next page and ensure that you check them all.
  9. Click Update. A list of scopes for your app appears.
  10. Click Save and Continue. The "Edit app registration" page appears.
  11. Click Save and Continue. The "OAuth consent screen" appears.

Create a credential

  1. Click Create Credentials and select OAuth client ID. The "Create OAuth client ID" page appears.
  2. Click the Application type drop-down list and select Desktop Application.
  3. In the name field, type a name for the credential. This name is only shown in the Cloud Console.
  4. Click Create. The OAuth client created screen appears. This screen shows the Client ID and Client secret.
  5. Click OK. The newly created credential appears under "OAuth 2.0 Client IDs."
  6. Click the download button to the right of the newly-created OAuth 2.0 Client ID. This copies a client secret JSON file to your desktop. Note the location of this file.
  7. Rename the client secret JSON file to "credentials.json" and move it to the gd_thief/credentials directory.

Add the victim's Google account to the Application's Test Users

In order to be able to run this script against the victim, you will need to add their Google account to the Test Users list for the App you just created

  1. On the Left side of the screen click OAuth consent screen. You "OAuth Consent Screen" page appears.
  2. Under Test Users click the Add Users button.
  3. Enter the victim's Gmail address in the email address field.
  4. Click the save button.

First Time running gd_thief

Upon gaining access to a Target's Google account, you can run gd_thief

  1. The first time running gd_thief, the script opens a new window prompting you to authorize access to your data:
    1. If you are signed in to multiple Google accounts, you are asked to select one account to use for the authorization. Make sure you select the victim's Google account

Dependencies

Google API Libraries: pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib

Usage:

usage:
python3 gd_thief.py [-h] -m [{dlAll, dlDict[-d <DICTIONARY FILE PATH>]}
	[-t <THREAD COUNT>]

help:

This Module will connect to Google's API using an access token and exfiltrate files
from a target's Google Drive.  It will output exfiltrated files to the ./loot directory

arguments:
        -m [{dlAll, dlDict}],
                --mode [{dlAll, dlDict}]
                The mode of file download
                Can be "dlAll", "dlDict [-d <DICTIONARY FILE PATH>]", or... (More options to come)

optional arguments:
        -d <DICTIONARY FILE PATH>, --dict <DICTIONARY FILE PATH>
                        Path to the dictionary file. Mandatory with download mode"-m, --mode dlDict"
                        You can use the provided dictionary, per example: "-d ./dictionaries/secrets-keywords.txt"
        -t <THREAD COUNT>, --threads <THREAD COUNT>
                        Number of threads. (Too many could exceeed Google's rate limit threshold)

        -h, --help
                show this help message and exit

NOTES:

  • Setting the thread count too high will cause an HTTP 403 "Rate limit exceeded," indicating that the user has reached Google Drive API's maximum request rate.
    • The thread count limit vaires from machine to machine. I've set it to 250 on a Macbook Pro, while 250 was too high for my Windows 10 Desktop

REFERENCES:

TODO:

  1. Threading
  2. Error Checking
  3. Wordlist file content search and download
  4. File type download
  5. Snort Sensitive Data regex file content search and download
  6. Optical Character Recognition (OCR)

Special Thanks:

Thank you to my good friend Cedric Owens for helping me with the threading piece!

Owner
Antonio Piazza
Antonio Piazza
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022