Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Overview

Conditional Variational Capsule Network for Open Set Recognition

arXiv arXiv

This repository hosts the official code related to "Conditional Variational Capsule Network for Open Set Recognition", Y. Guo, G. Camporese, W. Yang, A. Sperduti, L. Ballan, arXiv:2104.09159, 2021. [Download]

alt text

If you use the code/models hosted in this repository, please cite the following paper and give a star to the repo:

@misc{guo2021conditional,
      title={Conditional Variational Capsule Network for Open Set Recognition}, 
      author={Yunrui Guo and Guglielmo Camporese and Wenjing Yang and Alessandro Sperduti and Lamberto Ballan},
      year={2021},
      eprint={2104.09159},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Updates

  • [2021/04/09] - The code is online,
  • [2021/07/22] - The paper has been accepted to ICCV-2021!

Install

Once you have cloned the repo, all the commands below should be runned inside the main project folder cvaecaposr:

# Clone the repo
$ git clone https://github.com/guglielmocamporese/cvaecaposr.git

# Go to the project directory
$ cd cvaecaposr

To run the code you need to have conda installed (version >= 4.9.2).

Furthermore, all the requirements for running the code are specified in the environment.yaml file and can be installed with:

# Install the conda env
$ conda env create --file environment.yaml

# Activate the conda env
$ conda activate cvaecaposr

Dataset Splits

You can find the dataset splits for all the datasets we have used (i.e. for MNIST, SVHN, CIFAR10, CIFAR+10, CIFAR+50 and TinyImageNet) in the splits.py file.

When you run the code the datasets will be automatically downloaded in the ./data folder and the split number selected is determined by the --split_num argument specified when you run the main.py file (more on how to run the code in the Experiment section below).

Model Checkpoints

You can download the model checkpoints using the download_checkpoints.sh script in the scripts folder by running:

# Extend script permissions
$ chmod +x ./scripts/download_checkpoints.sh

# Download model checkpoints
$ ./scripts/download_checkpoints.sh

After the download you will find the model checkpoints in the ./checkpoints folder:

  • ./checkpoints/mnist.ckpt
  • ./checkpoints/svhn.ckpt
  • ./checkpoints/cifar10.ckpt
  • ./checkpoints/cifar+10.ckpt
  • ./checkpoints/cifar+50.ckpt
  • ./checkpoints/tiny_imagenet.ckpt

The size of each checkpoint file is between ~370 MB and ~670 MB.

Experiments

For all the experiments we have used a GeForce RTX 2080 Ti (11GB of memory) GPU.

For the training you will need ~7300 MiB of GPU memory whereas for test ~5000 MiB of GPU memory.

Train

The CVAECapOSR model can be trained using the main.py program. Here we reported an example of a training script for the mnist experiment:

# Train
$ python main.py \
      --data_base_path "./data" \
      --dataset "mnist" \
      --val_ratio 0.2 \
      --seed 1234 \
      --batch_size 32 \
      --split_num 0 \
      --z_dim 128 \
      --lr 5e-5 \
      --t_mu_shift 10.0 \
      --t_var_scale 0.1 \
      --alpha 1.0 \
      --beta 0.01 \
      --margin 10.0 \
      --in_dim_caps 16 \
      --out_dim_caps 32 \
      --checkpoint "" \
      --epochs 100 \
      --mode "train"

For simplicity we provide all the training scripts for the different datasets in the scripts folder. Specifically, you will find:

  • train_mnist.sh
  • train_svhn.sh
  • train_cifar10.sh
  • train_cifar+10.sh
  • train_cifar+50.sh
  • train_tinyimagenet.sh

that you can run as follows:

# Extend script permissions
$ chmod +x ./scripts/train_{dataset}.sh # where you have to set a dataset name

# Run training
$ ./scripts/train_{dataset}.sh # where you have to set a dataset name

All the temporary files of the training stage (model checkpoints, tensorboard metrics, ...) are created at ./tmp/{dataset}/version_{version_number}/ where the dataset is specified in the train_{dataset}.sh script and version_number is an integer number that is tracked and computed automatically in order to not override training logs (each training will create unique files in different folders, with different versions).

Test

The CVAECapOSR model can be tested using the main.py program. Here we reported an example of a test script for the mnist experiment:

# Test
$ python main.py \
      --data_base_path "./data" \
      --dataset "mnist" \
      --val_ratio 0.2 \
      --seed 1234 \
      --batch_size 32 \
      --split_num 0 \
      --z_dim 128 \
      --lr 5e-5 \
      --t_mu_shift 10.0 \
      --t_var_scale 0.1 \
      --alpha 1.0 \
      --beta 0.01 \
      --margin 10.0 \
      --in_dim_caps 16 \
      --out_dim_caps 32 \
      --checkpoint "checkpoints/mnist.ckpt" \
      --mode "test"

For simplicity we provide all the test scripts for the different datasets in the scripts folder. Specifically, you will find:

  • test_mnist.sh
  • test_svhn.sh
  • test_cifar10.sh
  • test_cifar+10.sh
  • test_cifar+50.sh
  • test_tinyimagenet.sh

that you can run as follows:

# Extend script permissions
$ chmod +x ./scripts/test_{dataset}.sh # where you have to set a dataset name

# Run training
$ ./scripts/test_{dataset}.sh # where you have to set a dataset name

Model Reconstruction

Here we reported the reconstruction of some test samples of the model after training.

MNIST
alt text
SVHN
alt text
CIFAR10
alt text
TinyImageNet
alt text
Owner
Guglielmo Camporese
PhD Student in Brain, Mind and Computer Science and Applied Scientist Intern at Amazon. Machine Learning for Videos, Images and Audio Speech contexts.
Guglielmo Camporese
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
3 Apr 20, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.

Vehicle Detection Video demo Overview Vehicle detection using these machine learning and computer vision techniques. Linear SVM HOG(Histogram of Orien

hata 1.1k Dec 18, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022