Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Overview

Conditional Variational Capsule Network for Open Set Recognition

arXiv arXiv

This repository hosts the official code related to "Conditional Variational Capsule Network for Open Set Recognition", Y. Guo, G. Camporese, W. Yang, A. Sperduti, L. Ballan, arXiv:2104.09159, 2021. [Download]

alt text

If you use the code/models hosted in this repository, please cite the following paper and give a star to the repo:

@misc{guo2021conditional,
      title={Conditional Variational Capsule Network for Open Set Recognition}, 
      author={Yunrui Guo and Guglielmo Camporese and Wenjing Yang and Alessandro Sperduti and Lamberto Ballan},
      year={2021},
      eprint={2104.09159},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Updates

  • [2021/04/09] - The code is online,
  • [2021/07/22] - The paper has been accepted to ICCV-2021!

Install

Once you have cloned the repo, all the commands below should be runned inside the main project folder cvaecaposr:

# Clone the repo
$ git clone https://github.com/guglielmocamporese/cvaecaposr.git

# Go to the project directory
$ cd cvaecaposr

To run the code you need to have conda installed (version >= 4.9.2).

Furthermore, all the requirements for running the code are specified in the environment.yaml file and can be installed with:

# Install the conda env
$ conda env create --file environment.yaml

# Activate the conda env
$ conda activate cvaecaposr

Dataset Splits

You can find the dataset splits for all the datasets we have used (i.e. for MNIST, SVHN, CIFAR10, CIFAR+10, CIFAR+50 and TinyImageNet) in the splits.py file.

When you run the code the datasets will be automatically downloaded in the ./data folder and the split number selected is determined by the --split_num argument specified when you run the main.py file (more on how to run the code in the Experiment section below).

Model Checkpoints

You can download the model checkpoints using the download_checkpoints.sh script in the scripts folder by running:

# Extend script permissions
$ chmod +x ./scripts/download_checkpoints.sh

# Download model checkpoints
$ ./scripts/download_checkpoints.sh

After the download you will find the model checkpoints in the ./checkpoints folder:

  • ./checkpoints/mnist.ckpt
  • ./checkpoints/svhn.ckpt
  • ./checkpoints/cifar10.ckpt
  • ./checkpoints/cifar+10.ckpt
  • ./checkpoints/cifar+50.ckpt
  • ./checkpoints/tiny_imagenet.ckpt

The size of each checkpoint file is between ~370 MB and ~670 MB.

Experiments

For all the experiments we have used a GeForce RTX 2080 Ti (11GB of memory) GPU.

For the training you will need ~7300 MiB of GPU memory whereas for test ~5000 MiB of GPU memory.

Train

The CVAECapOSR model can be trained using the main.py program. Here we reported an example of a training script for the mnist experiment:

# Train
$ python main.py \
      --data_base_path "./data" \
      --dataset "mnist" \
      --val_ratio 0.2 \
      --seed 1234 \
      --batch_size 32 \
      --split_num 0 \
      --z_dim 128 \
      --lr 5e-5 \
      --t_mu_shift 10.0 \
      --t_var_scale 0.1 \
      --alpha 1.0 \
      --beta 0.01 \
      --margin 10.0 \
      --in_dim_caps 16 \
      --out_dim_caps 32 \
      --checkpoint "" \
      --epochs 100 \
      --mode "train"

For simplicity we provide all the training scripts for the different datasets in the scripts folder. Specifically, you will find:

  • train_mnist.sh
  • train_svhn.sh
  • train_cifar10.sh
  • train_cifar+10.sh
  • train_cifar+50.sh
  • train_tinyimagenet.sh

that you can run as follows:

# Extend script permissions
$ chmod +x ./scripts/train_{dataset}.sh # where you have to set a dataset name

# Run training
$ ./scripts/train_{dataset}.sh # where you have to set a dataset name

All the temporary files of the training stage (model checkpoints, tensorboard metrics, ...) are created at ./tmp/{dataset}/version_{version_number}/ where the dataset is specified in the train_{dataset}.sh script and version_number is an integer number that is tracked and computed automatically in order to not override training logs (each training will create unique files in different folders, with different versions).

Test

The CVAECapOSR model can be tested using the main.py program. Here we reported an example of a test script for the mnist experiment:

# Test
$ python main.py \
      --data_base_path "./data" \
      --dataset "mnist" \
      --val_ratio 0.2 \
      --seed 1234 \
      --batch_size 32 \
      --split_num 0 \
      --z_dim 128 \
      --lr 5e-5 \
      --t_mu_shift 10.0 \
      --t_var_scale 0.1 \
      --alpha 1.0 \
      --beta 0.01 \
      --margin 10.0 \
      --in_dim_caps 16 \
      --out_dim_caps 32 \
      --checkpoint "checkpoints/mnist.ckpt" \
      --mode "test"

For simplicity we provide all the test scripts for the different datasets in the scripts folder. Specifically, you will find:

  • test_mnist.sh
  • test_svhn.sh
  • test_cifar10.sh
  • test_cifar+10.sh
  • test_cifar+50.sh
  • test_tinyimagenet.sh

that you can run as follows:

# Extend script permissions
$ chmod +x ./scripts/test_{dataset}.sh # where you have to set a dataset name

# Run training
$ ./scripts/test_{dataset}.sh # where you have to set a dataset name

Model Reconstruction

Here we reported the reconstruction of some test samples of the model after training.

MNIST
alt text
SVHN
alt text
CIFAR10
alt text
TinyImageNet
alt text
Owner
Guglielmo Camporese
PhD Student in Brain, Mind and Computer Science and Applied Scientist Intern at Amazon. Machine Learning for Videos, Images and Audio Speech contexts.
Guglielmo Camporese
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Xiangtao Kong 308 Jan 05, 2023
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022