Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Related tags

Deep LearningPOSA
Overview

Populating 3D Scenes by Learning Human-Scene Interaction

[Project Page] [Paper]

POSA Examples

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use the POSA data, model and software, (the "Data & Software"), including 3D meshes, images, videos, textures, software, scripts, and animations. By downloading and/or using the Data & Software (including downloading, cloning, installing, and any other use of the corresponding github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Data & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Description

This repository contains the training, random sampling, and scene population code used for the experiments in POSA.

Installation

To install the necessary dependencies run the following command:

    pip install -r requirements.txt

The code has been tested with Python 3.7, CUDA 10.0, CuDNN 7.5 and PyTorch 1.7 on Ubuntu 20.04.

Dependencies

POSA_dir

To be able to use the code you need to get the POSA_dir.zip. After unzipping, you should have a directory with the following structure:

POSA_dir
├── cam2world
├── data
├── mesh_ds
├── scenes
├── sdf
└── trained_models

The content of each folder is explained below:

  • trained_models contains two trained models. One is trained on the contact only and the other one is trained on contact and semantics.
  • data contains the train and test data extracted from the PROX Dataset and PROX-E Dataset.
  • scenes contains the 12 scenes from PROX Dataset
  • sdf contains the signed distance field for the scenes in the previous folder.
  • mesh_ds contains mesh downsampling and upsampling related files similar to the ones in COMA.

SMPL-X

You need to get the SMPLx Body Model. Please extract the folder and rename it to smplx_models and place it in the POSA_dir above.

AGORA

In addition, you need to get the POSA_rp_poses.zip file from AGORA Dataset and extract in the POSA_dir. This file contrains a number of test poses to be used in the next steps. Note that you don't need the whole AGORA dataset.

Finally run the following command or add it to your ~/.bashrc

export POSA_dir=Path of Your POSA_dir

Inference

You can test POSA using the trained models provided. Below we provide examples of how to generate POSA features and how to pupulate a 3D scene.

Random Sampling

To generate random features from a trained model, run the following command

python src/gen_rand_samples.py --config cfg_files/contact.yaml --checkpoint_path $POSA_dir/trained_models/contact.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --render 1 --viz 1 --num_rand_samples 3 

Or

python src/gen_rand_samples.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --render 1 --viz 1 --num_rand_samples 3 

This will open a window showing the generated features for the specified pkl file. It also render the features to the folder random_samples in POSA_dir.

The number of generated feature maps can be controlled by the flag num_rand_samples.

If you don't have a screen, you can turn off the visualization --viz 0.

If you don't have CUDA installed then you can add this flag --use_cuda 0. This applies to all commands in this repository.

You can also run the same command on the whole folder of test poses

python src/gen_rand_samples.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses --render 1 --viz 1 --num_rand_samples 3 

Scene Population

Given a body mesh from the AGORA Dataset, POSA automatically places the body mesh in 3D scene.

python src/affordance.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --scene_name MPH16 --render 1 --viz 1 

This will open a window showing the placed body in the scene. It also render the placements to the folder affordance in POSA_dir.

You can control the number of placements for the same body mesh in a scene using the flag num_rendered_samples, default value is 1.

The generated feature maps can be shown by setting adding --show_gen_sample 1

You can also run the same script on the whole folder of test poses

python src/affordance.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses --scene_name MPH16 --render 1 --viz 1 

To place clothed body meshes, you need to first buy the Renderpeople assets, or get the free models. Create a folder rp_clothed_meshes in POSA_dir and place all the clothed body .obj meshes in this folder. Then run this command:

python src/affordance.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --scene_name MPH16 --render 1 --viz 1 --use_clothed_mesh 1

Testing on Your Own Poses

POSA has been tested on the AGORA dataset only. Nonetheless, you can try POSA with any SMPL-X poses you have. You just need a .pkl file with the SMPLX body parameters and the gender. Your SMPL-X vertices must be brought to a canonical form similar to the POSA training data. This means the vertices should be centered at the pelvis joint, the x axis pointing to the left, the y axis pointing backward, and the z axis pointing upwards. As shown in the figure below. The x,y,z axes are denoted by the red, green, blue colors respectively.

canonical_form

See the function pkl_to_canonical in data_utils.py for an example of how to do this transformation.

Training

To retrain POSA from scratch run the following command

python src/train_posa.py --config cfg_files/contact_semantics.yaml

Visualize Ground Truth Data

You can also visualize the training data

python src/show_gt.py --config cfg_files/contact_semantics.yaml --train_data 1

Or test data

python src/show_gt.py --config cfg_files/contact_semantics.yaml --train_data 0

Note that the ground truth data has been downsampled to speed up training as explained in the paper. See training details in appendices.

Citation

If you find this Model & Software useful in your research we would kindly ask you to cite:

@inproceedings{Hassan:CVPR:2021,
    title = {Populating {3D} Scenes by Learning Human-Scene Interaction},
    author = {Hassan, Mohamed and Ghosh, Partha and Tesch, Joachim and Tzionas, Dimitrios and Black, Michael J.},
    booktitle = {Proceedings {IEEE/CVF} Conf.~on Computer Vision and Pattern Recognition ({CVPR})},
    month = jun,
    month_numeric = {6},
    year = {2021}
}

If you use the extracted training data, scenes or sdf the please cite:

@inproceedings{PROX:2019,
  title = {Resolving {3D} Human Pose Ambiguities with {3D} Scene Constraints},
  author = {Hassan, Mohamed and Choutas, Vasileios and Tzionas, Dimitrios and Black, Michael J.},
  booktitle = {International Conference on Computer Vision},
  month = oct,
  year = {2019},
  url = {https://prox.is.tue.mpg.de},
  month_numeric = {10}
}
@inproceedings{PSI:2019,
  title = {Generating 3D People in Scenes without People},
  author = {Zhang, Yan and Hassan, Mohamed and Neumann, Heiko and Black, Michael J. and Tang, Siyu},
  booktitle = {Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2020},
  url = {https://arxiv.org/abs/1912.02923},
  month_numeric = {6}
}

If you use the AGORA test poses, the please cite:

@inproceedings{Patel:CVPR:2021,
  title = {{AGORA}: Avatars in Geography Optimized for Regression Analysis},
  author = {Patel, Priyanka and Huang, Chun-Hao P. and Tesch, Joachim and Hoffmann, David T. and Tripathi, Shashank and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2021},
  month_numeric = {6}
}

Contact

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Mohamed Hassan
Mohamed Hassan
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023