Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Related tags

Deep LearningPOSA
Overview

Populating 3D Scenes by Learning Human-Scene Interaction

[Project Page] [Paper]

POSA Examples

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use the POSA data, model and software, (the "Data & Software"), including 3D meshes, images, videos, textures, software, scripts, and animations. By downloading and/or using the Data & Software (including downloading, cloning, installing, and any other use of the corresponding github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Data & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Description

This repository contains the training, random sampling, and scene population code used for the experiments in POSA.

Installation

To install the necessary dependencies run the following command:

    pip install -r requirements.txt

The code has been tested with Python 3.7, CUDA 10.0, CuDNN 7.5 and PyTorch 1.7 on Ubuntu 20.04.

Dependencies

POSA_dir

To be able to use the code you need to get the POSA_dir.zip. After unzipping, you should have a directory with the following structure:

POSA_dir
├── cam2world
├── data
├── mesh_ds
├── scenes
├── sdf
└── trained_models

The content of each folder is explained below:

  • trained_models contains two trained models. One is trained on the contact only and the other one is trained on contact and semantics.
  • data contains the train and test data extracted from the PROX Dataset and PROX-E Dataset.
  • scenes contains the 12 scenes from PROX Dataset
  • sdf contains the signed distance field for the scenes in the previous folder.
  • mesh_ds contains mesh downsampling and upsampling related files similar to the ones in COMA.

SMPL-X

You need to get the SMPLx Body Model. Please extract the folder and rename it to smplx_models and place it in the POSA_dir above.

AGORA

In addition, you need to get the POSA_rp_poses.zip file from AGORA Dataset and extract in the POSA_dir. This file contrains a number of test poses to be used in the next steps. Note that you don't need the whole AGORA dataset.

Finally run the following command or add it to your ~/.bashrc

export POSA_dir=Path of Your POSA_dir

Inference

You can test POSA using the trained models provided. Below we provide examples of how to generate POSA features and how to pupulate a 3D scene.

Random Sampling

To generate random features from a trained model, run the following command

python src/gen_rand_samples.py --config cfg_files/contact.yaml --checkpoint_path $POSA_dir/trained_models/contact.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --render 1 --viz 1 --num_rand_samples 3 

Or

python src/gen_rand_samples.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --render 1 --viz 1 --num_rand_samples 3 

This will open a window showing the generated features for the specified pkl file. It also render the features to the folder random_samples in POSA_dir.

The number of generated feature maps can be controlled by the flag num_rand_samples.

If you don't have a screen, you can turn off the visualization --viz 0.

If you don't have CUDA installed then you can add this flag --use_cuda 0. This applies to all commands in this repository.

You can also run the same command on the whole folder of test poses

python src/gen_rand_samples.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses --render 1 --viz 1 --num_rand_samples 3 

Scene Population

Given a body mesh from the AGORA Dataset, POSA automatically places the body mesh in 3D scene.

python src/affordance.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --scene_name MPH16 --render 1 --viz 1 

This will open a window showing the placed body in the scene. It also render the placements to the folder affordance in POSA_dir.

You can control the number of placements for the same body mesh in a scene using the flag num_rendered_samples, default value is 1.

The generated feature maps can be shown by setting adding --show_gen_sample 1

You can also run the same script on the whole folder of test poses

python src/affordance.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses --scene_name MPH16 --render 1 --viz 1 

To place clothed body meshes, you need to first buy the Renderpeople assets, or get the free models. Create a folder rp_clothed_meshes in POSA_dir and place all the clothed body .obj meshes in this folder. Then run this command:

python src/affordance.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --scene_name MPH16 --render 1 --viz 1 --use_clothed_mesh 1

Testing on Your Own Poses

POSA has been tested on the AGORA dataset only. Nonetheless, you can try POSA with any SMPL-X poses you have. You just need a .pkl file with the SMPLX body parameters and the gender. Your SMPL-X vertices must be brought to a canonical form similar to the POSA training data. This means the vertices should be centered at the pelvis joint, the x axis pointing to the left, the y axis pointing backward, and the z axis pointing upwards. As shown in the figure below. The x,y,z axes are denoted by the red, green, blue colors respectively.

canonical_form

See the function pkl_to_canonical in data_utils.py for an example of how to do this transformation.

Training

To retrain POSA from scratch run the following command

python src/train_posa.py --config cfg_files/contact_semantics.yaml

Visualize Ground Truth Data

You can also visualize the training data

python src/show_gt.py --config cfg_files/contact_semantics.yaml --train_data 1

Or test data

python src/show_gt.py --config cfg_files/contact_semantics.yaml --train_data 0

Note that the ground truth data has been downsampled to speed up training as explained in the paper. See training details in appendices.

Citation

If you find this Model & Software useful in your research we would kindly ask you to cite:

@inproceedings{Hassan:CVPR:2021,
    title = {Populating {3D} Scenes by Learning Human-Scene Interaction},
    author = {Hassan, Mohamed and Ghosh, Partha and Tesch, Joachim and Tzionas, Dimitrios and Black, Michael J.},
    booktitle = {Proceedings {IEEE/CVF} Conf.~on Computer Vision and Pattern Recognition ({CVPR})},
    month = jun,
    month_numeric = {6},
    year = {2021}
}

If you use the extracted training data, scenes or sdf the please cite:

@inproceedings{PROX:2019,
  title = {Resolving {3D} Human Pose Ambiguities with {3D} Scene Constraints},
  author = {Hassan, Mohamed and Choutas, Vasileios and Tzionas, Dimitrios and Black, Michael J.},
  booktitle = {International Conference on Computer Vision},
  month = oct,
  year = {2019},
  url = {https://prox.is.tue.mpg.de},
  month_numeric = {10}
}
@inproceedings{PSI:2019,
  title = {Generating 3D People in Scenes without People},
  author = {Zhang, Yan and Hassan, Mohamed and Neumann, Heiko and Black, Michael J. and Tang, Siyu},
  booktitle = {Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2020},
  url = {https://arxiv.org/abs/1912.02923},
  month_numeric = {6}
}

If you use the AGORA test poses, the please cite:

@inproceedings{Patel:CVPR:2021,
  title = {{AGORA}: Avatars in Geography Optimized for Regression Analysis},
  author = {Patel, Priyanka and Huang, Chun-Hao P. and Tesch, Joachim and Hoffmann, David T. and Tripathi, Shashank and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2021},
  month_numeric = {6}
}

Contact

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Mohamed Hassan
Mohamed Hassan
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023