Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Related tags

Deep LearningPOSA
Overview

Populating 3D Scenes by Learning Human-Scene Interaction

[Project Page] [Paper]

POSA Examples

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use the POSA data, model and software, (the "Data & Software"), including 3D meshes, images, videos, textures, software, scripts, and animations. By downloading and/or using the Data & Software (including downloading, cloning, installing, and any other use of the corresponding github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Data & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Description

This repository contains the training, random sampling, and scene population code used for the experiments in POSA.

Installation

To install the necessary dependencies run the following command:

    pip install -r requirements.txt

The code has been tested with Python 3.7, CUDA 10.0, CuDNN 7.5 and PyTorch 1.7 on Ubuntu 20.04.

Dependencies

POSA_dir

To be able to use the code you need to get the POSA_dir.zip. After unzipping, you should have a directory with the following structure:

POSA_dir
├── cam2world
├── data
├── mesh_ds
├── scenes
├── sdf
└── trained_models

The content of each folder is explained below:

  • trained_models contains two trained models. One is trained on the contact only and the other one is trained on contact and semantics.
  • data contains the train and test data extracted from the PROX Dataset and PROX-E Dataset.
  • scenes contains the 12 scenes from PROX Dataset
  • sdf contains the signed distance field for the scenes in the previous folder.
  • mesh_ds contains mesh downsampling and upsampling related files similar to the ones in COMA.

SMPL-X

You need to get the SMPLx Body Model. Please extract the folder and rename it to smplx_models and place it in the POSA_dir above.

AGORA

In addition, you need to get the POSA_rp_poses.zip file from AGORA Dataset and extract in the POSA_dir. This file contrains a number of test poses to be used in the next steps. Note that you don't need the whole AGORA dataset.

Finally run the following command or add it to your ~/.bashrc

export POSA_dir=Path of Your POSA_dir

Inference

You can test POSA using the trained models provided. Below we provide examples of how to generate POSA features and how to pupulate a 3D scene.

Random Sampling

To generate random features from a trained model, run the following command

python src/gen_rand_samples.py --config cfg_files/contact.yaml --checkpoint_path $POSA_dir/trained_models/contact.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --render 1 --viz 1 --num_rand_samples 3 

Or

python src/gen_rand_samples.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --render 1 --viz 1 --num_rand_samples 3 

This will open a window showing the generated features for the specified pkl file. It also render the features to the folder random_samples in POSA_dir.

The number of generated feature maps can be controlled by the flag num_rand_samples.

If you don't have a screen, you can turn off the visualization --viz 0.

If you don't have CUDA installed then you can add this flag --use_cuda 0. This applies to all commands in this repository.

You can also run the same command on the whole folder of test poses

python src/gen_rand_samples.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses --render 1 --viz 1 --num_rand_samples 3 

Scene Population

Given a body mesh from the AGORA Dataset, POSA automatically places the body mesh in 3D scene.

python src/affordance.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --scene_name MPH16 --render 1 --viz 1 

This will open a window showing the placed body in the scene. It also render the placements to the folder affordance in POSA_dir.

You can control the number of placements for the same body mesh in a scene using the flag num_rendered_samples, default value is 1.

The generated feature maps can be shown by setting adding --show_gen_sample 1

You can also run the same script on the whole folder of test poses

python src/affordance.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses --scene_name MPH16 --render 1 --viz 1 

To place clothed body meshes, you need to first buy the Renderpeople assets, or get the free models. Create a folder rp_clothed_meshes in POSA_dir and place all the clothed body .obj meshes in this folder. Then run this command:

python src/affordance.py --config cfg_files/contact_semantics.yaml --checkpoint_path $POSA_dir/trained_models/contact_semantics.pt --pkl_file_path $POSA_dir/POSA_rp_poses/rp_aaron_posed_001_0_0.pkl --scene_name MPH16 --render 1 --viz 1 --use_clothed_mesh 1

Testing on Your Own Poses

POSA has been tested on the AGORA dataset only. Nonetheless, you can try POSA with any SMPL-X poses you have. You just need a .pkl file with the SMPLX body parameters and the gender. Your SMPL-X vertices must be brought to a canonical form similar to the POSA training data. This means the vertices should be centered at the pelvis joint, the x axis pointing to the left, the y axis pointing backward, and the z axis pointing upwards. As shown in the figure below. The x,y,z axes are denoted by the red, green, blue colors respectively.

canonical_form

See the function pkl_to_canonical in data_utils.py for an example of how to do this transformation.

Training

To retrain POSA from scratch run the following command

python src/train_posa.py --config cfg_files/contact_semantics.yaml

Visualize Ground Truth Data

You can also visualize the training data

python src/show_gt.py --config cfg_files/contact_semantics.yaml --train_data 1

Or test data

python src/show_gt.py --config cfg_files/contact_semantics.yaml --train_data 0

Note that the ground truth data has been downsampled to speed up training as explained in the paper. See training details in appendices.

Citation

If you find this Model & Software useful in your research we would kindly ask you to cite:

@inproceedings{Hassan:CVPR:2021,
    title = {Populating {3D} Scenes by Learning Human-Scene Interaction},
    author = {Hassan, Mohamed and Ghosh, Partha and Tesch, Joachim and Tzionas, Dimitrios and Black, Michael J.},
    booktitle = {Proceedings {IEEE/CVF} Conf.~on Computer Vision and Pattern Recognition ({CVPR})},
    month = jun,
    month_numeric = {6},
    year = {2021}
}

If you use the extracted training data, scenes or sdf the please cite:

@inproceedings{PROX:2019,
  title = {Resolving {3D} Human Pose Ambiguities with {3D} Scene Constraints},
  author = {Hassan, Mohamed and Choutas, Vasileios and Tzionas, Dimitrios and Black, Michael J.},
  booktitle = {International Conference on Computer Vision},
  month = oct,
  year = {2019},
  url = {https://prox.is.tue.mpg.de},
  month_numeric = {10}
}
@inproceedings{PSI:2019,
  title = {Generating 3D People in Scenes without People},
  author = {Zhang, Yan and Hassan, Mohamed and Neumann, Heiko and Black, Michael J. and Tang, Siyu},
  booktitle = {Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2020},
  url = {https://arxiv.org/abs/1912.02923},
  month_numeric = {6}
}

If you use the AGORA test poses, the please cite:

@inproceedings{Patel:CVPR:2021,
  title = {{AGORA}: Avatars in Geography Optimized for Regression Analysis},
  author = {Patel, Priyanka and Huang, Chun-Hao P. and Tesch, Joachim and Hoffmann, David T. and Tripathi, Shashank and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2021},
  month_numeric = {6}
}

Contact

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Mohamed Hassan
Mohamed Hassan
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023