Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Overview

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Open in Streamlit Open In Colab

스크린샷 2021-07-04 오후 4 11 51

This project attempted to implement the paper Putting NeRF on a Diet (DietNeRF) in JAX/Flax. DietNeRF is designed for rendering quality novel views in few-shot learning scheme, a task that vanilla NeRF (Neural Radiance Field) struggles. To achieve this, the author coins Semantic Consistency Loss to supervise DietNeRF by prior knowledge from CLIP Vision Transformer. Such supervision enables DietNeRF to learn 3D scene reconstruction with CLIP's prior knowledge on 2D views.

Besides this repo, you can check our write-up and demo here:

🤩 Demo

  1. You can check out our demo in Hugging Face Space
  2. Or you can set up our Streamlit demo locally (model checkpoints will be fetched automatically upon startup)
pip install -r requirements_demo.txt
streamlit run app.py

Streamlit Demo

Implementation

Our code is written in JAX/ Flax and mainly based upon jaxnerf from Google Research. The base code is highly optimized in GPU & TPU. For semantic consistency loss, we utilize pretrained CLIP Vision Transformer from transformers library.

To learn more about DietNeRF, our experiments and implementation, you are highly recommended to check out our very detailed Notion write-up!

스크린샷 2021-07-04 오후 4 11 51

🤗 Hugging Face Model Hub Repo

You can also find our project and our model checkpoints on our Hugging Face Model Hub Repository. The models checkpoints are located in models folder.

Our JAX/Flax implementation currently supports:

Platform Single-Host GPU Multi-Device TPU
Type Single-Device Multi-Device Single-Host Multi-Host
Training Supported Supported Supported Supported
Evaluation Supported Supported Supported Supported

💻 Installation

# Clone the repo
git clone https://github.com/codestella/putting-nerf-on-a-diet
# Create a conda environment, note you can use python 3.6-3.8 as
# one of the dependencies (TensorFlow) hasn't supported python 3.9 yet.
conda create --name jaxnerf python=3.6.12; conda activate jaxnerf
# Prepare pip
conda install pip; pip install --upgrade pip
# Install requirements
pip install -r requirements.txt
# [Optional] Install GPU and TPU support for Jax
# Remember to change cuda101 to your CUDA version, e.g. cuda110 for CUDA 11.0.
!pip install --upgrade jax "jax[cuda110]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
# install flax and flax-transformer
pip install flax transformers[flax]

Dataset

Download the datasets from the NeRF official Google Drive. Please download the nerf_synthetic.zip and unzip them in the place you like. Let's assume they are placed under /tmp/jaxnerf/data/.

🤟 How to Train

  1. Train in our prepared Colab notebook: Colab Pro is recommended, otherwise you may encounter out-of-memory
  2. Train locally: set use_semantic_loss=true in your yaml configuration file to enable DietNeRF.
python -m train \
  --data_dir=/PATH/TO/YOUR/SCENE/DATA \ # (e.g. nerf_synthetic/lego)
  --train_dir=/PATH/TO/THE/PLACE/YOU/WANT/TO/SAVE/CHECKPOINTS \
  --config=configs/CONFIG_YOU_LIKE

💎 Experimental Results

Rendered Rendering images by 8-shot learned DietNeRF

DietNeRF has a strong capacity to generalise on novel and challenging views with EXTREMELY SMALL TRAINING SAMPLES!

HOTDOG / DRUM / SHIP / CHAIR / LEGO / MIC

Rendered GIF by occluded 14-shot learned NeRF and Diet-NeRF

We made artificial occlusion on the right side of image (Only picked left side training poses). The reconstruction quality can be compared with this experiment. DietNeRF shows better quality than Original NeRF when It is occluded.

Training poses

LEGO

Diet NeRF NeRF

SHIP

Diet NeRF NeRF

👨‍👧‍👦 Our Team

Teams Members
Project Managing Stella Yang To Watch Our Project Progress, Please Check Our Project Notion
NeRF Team Stella Yang, Alex Lau, Seunghyun Lee, Hyunkyu Kim, Haswanth Aekula, JaeYoung Chung
CLIP Team Seunghyun Lee, Sasikanth Kotti, Khalid Sifullah , Sunghyun Kim
Cloud TPU Team Alex Lau, Aswin Pyakurel, JaeYoung Chung, Sunghyun Kim

*Special mention to our "night owl" contributors 🦉 : Seunghyun Lee, Alex Lau, Stella Yang, Haswanth Aekula

💞 Social Impact

  • Game Industry
  • Augmented Reality Industry
  • Virtual Reality Industry
  • Graphics Industry
  • Online shopping
  • Metaverse
  • Digital Twin
  • Mapping / SLAM

🌱 References

This project is based on “JAX-NeRF”.

@software{jaxnerf2020github,
  author = {Boyang Deng and Jonathan T. Barron and Pratul P. Srinivasan},
  title = {{JaxNeRF}: an efficient {JAX} implementation of {NeRF}},
  url = {https://github.com/google-research/google-research/tree/master/jaxnerf},
  version = {0.0},
  year = {2020},
}

This project is based on “Putting NeRF on a Diet”.

@misc{jain2021putting,
      title={Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis}, 
      author={Ajay Jain and Matthew Tancik and Pieter Abbeel},
      year={2021},
      eprint={2104.00677},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

🔑 License

Apache License 2.0

❤️ Special Thanks

Our Project is motivated by HuggingFace X GoogleAI (JAX) Community Week Event 2021.

We would like to take this chance to thank Hugging Face for organizing such an amazing open-source initiative, Suraj and Patrick for all the technical help. We learn a lot throughout this wonderful experience!

스크린샷 2021-07-04 오후 4 11 51

Finally, we would like to thank Common Computer AI for sponsoring our team access to V100 multi-GPUs server. Thank you so much for your support!

스크린샷

Owner
Stella Seoyeon Yang's New Github Account for Research. Ph.D. Candidate Student in SNU, CV lab.
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
sktime companion package for deep learning based on TensorFlow

NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and

sktime 573 Jan 05, 2023
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022