Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

Overview

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes"

Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 framework A recurrent attention model sequentially observes glimpses from an image and predicts a class label. At time t, the model actively observes a glimpse gt and its coordinates lt. Given gt and lt, the feed-forward module F extracts features ft, and the recurrent module R updates a hidden state to ht. Using an updated hidden state ht, the linear classifier C predicts the class distribution p(y|ht). At time t+1, the model assesses various candidate locations l before attending an optimal one. It predicts p(y|g,l,ht) ahead of time and selects the candidate l that maximizes KL[p(y|g,l,ht)||p(y|ht)]. The model synthesizes the features of g using a Partial VAE to approximate p(y|g,l,ht) without attending to the glimpse g. The normalizing flow-based encoder S predicts the approximate posterior q(z|ht). The decoder D uses a sample z~q(z|ht) to synthesize a feature map f~ containing features of all glimpses. The model uses f~(l) as features of a glimpse at location l and evaluates p(y|g,l,ht)=p(y|f~(l),ht). Dashed arrows show a path to compute the lookahead class distribution p(y|f~(l),ht).

Requirements:

torch==1.8.1, torchvision==0.9.1, tensorboard==2.5.0, fire==0.4.0

Datasets:

Training a model

Use main.py to train and evaluate the model.

Arguments

  • dataset: one of 'svhn', 'cifar10', 'cifar100', 'cinic10', 'tinyimagenet'
  • datapath: path to the downloaded datasets
  • lr: learning rate
  • training_phase: one of 'first', 'second', 'third'
  • ccebal: coefficient for cross entropy loss
  • batch: batch-size for training
  • batchv: batch-size for evaluation
  • T: maximum time-step
  • logfolder: path to log directory
  • epochs: number of training epochs
  • pretrain_checkpoint: checkpoint for pretrained model from previous training phase

Example commands to train the model for SVHN dataset are as follows. Training Stage one

python3 main.py \
    --dataset='svhn' \
    --datapath='./data/' \
    --lr=0.001 \
    --training_phase='first' \
    --ccebal=1 \
    --batch=64 \
    --batchv=64 \
    --T=7 \
    --logfolder='./svhn_log_first' \
    --epochs=1000 \
    --pretrain_checkpoint=None

Training Stage two

python3 main.py \
    --dataset='svhn' \
    --datapath='./data/' \
    --lr=0.001 \
    --training_phase='second' \
    --ccebal=0 \
    --batch=64 \
    --batchv=64 \
    --T=7 \
    --logfolder='./svhn_log_second' \
    --epochs=100 \
    --pretrain_checkpoint='./svhn_log_first/weights_f_1000.pth'

Training Stage three

python3 main.py \
    --dataset='svhn' \
    --datapath='./data/' \
    --lr=0.001 \
    --training_phase='third' \
    --ccebal=16 \
    --batch=64 \
    --batchv=64 \
    --T=7 \
    --logfolder='./svhn_log_third' \
    --epochs=100 \
    --pretrain_checkpoint='./svhn_log_second/weights_f_100.pth'

Visualization of attention policy for a CIFAR-10 image

example The top row shows the entire image and the EIG maps for t=1 to 6. The bottom row shows glimpses attended by our model. The model observes the first glimpse at a random location. Our model observes a glimpse of size 8x8. The glimpses overlap with the stride of 4, resulting in a 7x7 grid of glimpses. The EIG maps are of size 7x7 and are upsampled for the display. We display the entire image for reference; our model never observes the whole image.

Acknowledgement

Major parts of neural spline flows implementation are borrowed from Karpathy's pytorch-normalizing-flows.

Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consist

THUML @ Tsinghua University 2.2k Jan 03, 2023
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022