Transfer Learning for Pose Estimation of Illustrated Characters

Overview

bizarre-pose-estimator

Transfer Learning for Pose Estimation of Illustrated Characters
Shuhong Chen *, Matthias Zwicker *
WACV2022
[arxiv] [video] [poster] [github]

Human pose information is a critical component in many downstream image processing tasks, such as activity recognition and motion tracking. Likewise, a pose estimator for the illustrated character domain would provide a valuable prior for assistive content creation tasks, such as reference pose retrieval and automatic character animation. But while modern data-driven techniques have substantially improved pose estimation performance on natural images, little work has been done for illustrations. In our work, we bridge this domain gap by efficiently transfer-learning from both domain-specific and task-specific source models. Additionally, we upgrade and expand an existing illustrated pose estimation dataset, and introduce two new datasets for classification and segmentation subtasks. We then apply the resultant state-of-the-art character pose estimator to solve the novel task of pose-guided illustration retrieval. All data, models, and code will be made publicly available.

download

Downloads can be found in this drive folder: wacv2022_bizarre_pose_estimator_release

  • Download bizarre_pose_models.zip and extract to the root project directory; the extracted file structure should merge with the ones in this repo.
  • Download bizarre_pose_dataset.zip and extract to ./_data. The images and annotations should be at ./_data/bizarre_pose_dataset/raw.
  • Download character_bg_seg_data.zip and extract to ./_data. Under ./_data/character_bg_seg, there are bg and fg folders. All foregrounds come from danbooru, and are indexed by the provided csv. While some backgrounds come from danbooru, we use several from jerryli27/pixiv_dataset; these are somewhat hard to download, so we provide the raw pixiv images in the zip.
  • Please refer to Gwern's Danbooru dataset to download danbooru images by ID.

Warning: While NSFW art was filtered out from these data by tag, it was not possible to manually inspect all the data for mislabeled safety ratings. Please use this data at your own risk.

setup

Make a copy of ./_env/machine_config.bashrc.template to ./_env/machine_config.bashrc, and set $PROJECT_DN to the absolute path of this repository folder. The other variables are optional.

This project requires docker with a GPU. Run these lines from the project directory to pull the image and enter a container; note these are bash scripts inside the ./make folder, not make commands. Alternatively, you can build the docker image yourself.

make/docker_pull
make/shell_docker
# OR
make/docker_build
make/shell_docker

danbooru tagging

The danbooru subset used to train the tagger and custom tag rulebook can be found under ./_data/danbooru/_filters. Run this line to tag a sample image:

python3 -m _scripts.danbooru_tagger ./_samples/megumin.png

character background segmentation

Run this line to segment a sample image and extract the bounding box:

python3 -m _scripts.character_segmenter ./_samples/megumin.png

pose estimation

There are several models available in ./_train/character_pose_estim/runs, corresponding to our models at the top of Table 1 in the paper. Run this line to estimate the pose of a sample image, using one of those models:

python3 -m _scripts.pose_estimator \
    ./_samples/megumin.png \
    ./_train/character_pose_estim/runs/feat_concat+data.ckpt

pose-based retrieval

Run this line to estimate the pose of a sample image, and get links to danbooru posts with similar poses:

python3 -m _scripts.pose_retrieval ./_samples/megumin.png

faq

  • Does this work for multiple characters in an image, or images that aren't full-body? Sorry but no, this project is focused just on single full-body characters; however we may release our instance-based models separately.
  • Can I do this without docker? Please use docker, it is very good. If you can't use docker, you can try to replicate the environment from ./_env/Dockerfile, but this is untested.
  • What does bn mean in the files/code? It's sort for "basename", or an ID for a single data sample.
  • What is the sauce for the artwork in ./_samples? Full artist attributions are in the supplementary of our paper, Tables 2 and 3; the retrieval figure is the first two rows of Fig. 2, and Megumin is entry (1,0) of Fig. 3.
  • Which part is best? Part 4.
Owner
Shuhong Chen
Shuhong Chen
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022