Implementation of the state-of-the-art vision transformers with tensorflow

Overview

ViT Tensorflow

This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision models first introduced in An Image is worth 16 x 16 words). This repository is inspired from the work of lucidrains which is vit-pytorch. I hope you enjoy these implementations :)

Models

Requirements

pip install tensorflow

Vision Transformer

Vision transformer was introduced in An Image is worth 16 x 16 words. This model uses a Transformer encoder to classify images with pure attention and no convolution.

Usage

Defining the Model

from vit import ViT
import tensorflow as tf

vitClassifier = ViT(
                    num_classes=1000,
                    patch_size=16,
                    num_of_patches=(224//16)**2,
                    d_model=128,
                    heads=2,
                    num_layers=4,
                    mlp_rate=2,
                    dropout_rate=0.1,
                    prediction_dropout=0.3,
)
Params
  • num_classes: int
    number of classes used for the final classification head
  • patch_size: int
    patch_size used for the tokenization
  • num_of_patches: int
    number of patches after the tokenization which is used for the positional encoding, Generally it can be computed by the following formula (((h-patch_size)//patch_size) + 1)*(((w-patch_size)//patch_size) + 1) where h is the height of the image and w is the width of the image. In addition, when height and width of the image are devisable by the patch_size the following formula can be used as well (h//patch_size)*(w//patch_size)
  • d_model: int
    hidden dimension of the transformer encoder and the demnesion used for patch embedding
  • heads: int
    number of heads used for the multi-head attention mechanism
  • num_layers: int
    number of blocks in encoder transformer
  • mlp_rate: int
    the rate of expansion in the feed-forward block of each transformer block (the dimension after expansion is mlp_rate * d_model)
  • dropout_rate: float
    dropout rate used in the multi-head attention mechanism
  • prediction_dropout: float
    dropout rate used in the final prediction head of the model

Inference

sampleInput = tf.random.normal(shape=(1 , 224 , 224 , 3))
output = vitClassifier(sampleInput , training=False)
print(output.shape) # (1 , 1000)

Training

vitClassifier.compile(
              loss=tf.keras.losses.SparseCategoricalCrossentropy(),
              optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
              metrics=[
                       tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
                       tf.keras.metrics.SparseTopKCategoricalAccuracy(k=5 , name="top_5_accuracy"),
              ])

vitClassifier.fit(
              trainingData, #Tensorflow dataset of images and labels in shape of ((b , h , w , 3) , (b,))
              validation_data=valData, #The same as training
              epochs=100,)

Convolutional Vision Transformer

Convolutional Vision Transformer was introduced in here. This model uses a hierarchical (multi-stage) architecture with convolutional embeddings in the begining of each stage. it also uses Convolutional Transformer Blocks to improve the orginal vision transformer by adding CNNs inductive bias into the architecture.

Usage

Defining the Model

from cvt import CvT , CvTStage
import tensorflow as tf

cvtModel = CvT(
num_of_classes=1000, 
stages=[
        CvTStage(projectionDim=64, 
                 heads=1, 
                 embeddingWindowSize=(7 , 7), 
                 embeddingStrides=(4 , 4), 
                 layers=1,
                 projectionWindowSize=(3 , 3), 
                 projectionStrides=(2 , 2), 
                 ffnRate=4,
                 dropoutRate=0.1),
        CvTStage(projectionDim=192,
                 heads=3,
                 embeddingWindowSize=(3 , 3), 
                 embeddingStrides=(2 , 2),
                 layers=1, 
                 projectionWindowSize=(3 , 3), 
                 projectionStrides=(2 , 2), 
                 ffnRate=4,
                 dropoutRate=0.1),
        CvTStage(projectionDim=384,
                 heads=6,
                 embeddingWindowSize=(3 , 3),
                 embeddingStrides=(2 , 2),
                 layers=1,
                 projectionWindowSize=(3 , 3),
                 projectionStrides=(2 , 2), 
                 ffnRate=4,
                 dropoutRate=0.1)
],
dropout=0.5)
CvT Params
  • num_of_classes: int
    number of classes used in the final prediction layer
  • stages: list of CvTStage
    list of cvt stages
  • dropout: float
    dropout rate used for the prediction head
CvTStage Params
  • projectionDim: int
    dimension used for the multi-head attention mechanism and the convolutional embedding
  • heads: int
    number of heads in the multi-head attention mechanism
  • embeddingWindowSize: tuple(int , int)
    window size used for the convolutional emebdding
  • embeddingStrides: tuple(int , int)
    strides used for the convolutional embedding
  • layers: int
    number of convolutional transformer blocks
  • projectionWindowSize: tuple(int , int)
    window size used for the convolutional projection in each convolutional transformer block
  • projectionStrides: tuple(int , int)
    strides used for the convolutional projection in each convolutional transformer block
  • ffnRate: int
    expansion rate of the mlp block in each convolutional transformer block
  • dropoutRate: float
    dropout rate used in each convolutional transformer block

Inference

sampleInput = tf.random.normal(shape=(1 , 224 , 224 , 3))
output = cvtModel(sampleInput , training=False)
print(output.shape) # (1 , 1000)

Training

cvtModel.compile(
        loss=tf.keras.losses.SparseCategoricalCrossentropy(),
        optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
        metrics=[
                 tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
                 tf.keras.metrics.SparseTopKCategoricalAccuracy(k=5 , name="top_5_accuracy"),
        ])

cvtModel.fit(
        trainingData, #Tensorflow dataset of images and labels in shape of ((b , h , w , 3) , (b,))
        validation_data=valData, #The same as training
        epochs=100,)

Pyramid Vision Transformer V1

Pyramid Vision Transformer V1 was introduced in here. This model stacks multiple Transformer Encoders to form the first convolution-free multi-scale backbone for various visual tasks including Image Segmentation , Object Detection and etc. In addition to this a new attention mechanism called Spatial Reduction Attention (SRA) is also introduced in this paper to reduce the quadratic complexity of the multi-head attention mechansim.

Usage

Defining the Model

from pvt_v1 import PVT , PVTStage
import tensorflow as tf

pvtModel = PVT(
num_of_classes=1000, 
stages=[
        PVTStage(d_model=64,
                 patch_size=(2 , 2),
                 heads=1,
                 reductionFactor=2,
                 mlp_rate=2,
                 layers=2, 
                 dropout_rate=0.1),
        PVTStage(d_model=128,
                 patch_size=(2 , 2),
                 heads=2, 
                 reductionFactor=2, 
                 mlp_rate=2, 
                 layers=2, 
                 dropout_rate=0.1),
        PVTStage(d_model=320,
                 patch_size=(2 , 2),
                 heads=5, 
                 reductionFactor=2, 
                 mlp_rate=2, 
                 layers=2, 
                 dropout_rate=0.1),
],
dropout=0.5)
PVT Params
  • num_of_classes: int
    number of classes used in the final prediction layer
  • stages: list of PVTStage
    list of pvt stages
  • dropout: float
    dropout rate used for the prediction head
PVTStage Params
  • d_model: int
    dimension used for the SRA mechanism and the patch embedding
  • patch_size: tuple(int , int)
    window size used for the patch emebdding
  • heads: int
    number of heads in the SRA mechanism
  • reductionFactor: int
    reduction factor used for the down sampling of the K and V in the SRA mechanism
  • mlp_rate: int
    expansion rate used in the feed-forward block
  • layers: int
    number of transformer encoders
  • dropout_rate: float
    dropout rate used in each transformer encoder

Inference

sampleInput = tf.random.normal(shape=(1 , 224 , 224 , 3))
output = pvtModel(sampleInput , training=False)
print(output.shape) # (1 , 1000)

Training

pvtModel.compile(
        loss=tf.keras.losses.SparseCategoricalCrossentropy(),
        optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
        metrics=[
                 tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
                 tf.keras.metrics.SparseTopKCategoricalAccuracy(k=5 , name="top_5_accuracy"),
        ])

pvtModel.fit(
        trainingData, #Tensorflow dataset of images and labels in shape of ((b , h , w , 3) , (b,))
        validation_data=valData, #The same as training
        epochs=100,)

Pyramid Vision Transformer V2

Pyramid Vision Transformer V2 was introduced in here. This model is an improved version of the PVT V1. The improvements of this version are as follows:

  1. It uses overlapping patch embedding by using padded convolutions
  2. It uses convolutional feed-forward blocks which have a depth-wise convolution after the first fully-connected layer
  3. It uses a fixed pooling instead of convolutions for down sampling the K and V in the SRA attention mechanism (The new attention mechanism is called Linear SRA)

Usage

Defining the Model

from pvt_v2 import PVTV2 , PVTV2Stage
import tensorflow as tf

pvtV2Model = PVTV2(
num_of_classes=1000, 
stages=[
        PVTV2Stage(d_model=64,
                   windowSize=(2 , 2), 
                   heads=1,
                   poolingSize=(7 , 7), 
                   mlp_rate=2, 
                   mlp_windowSize=(3 , 3), 
                   layers=2, 
                   dropout_rate=0.1),
        PVTV2Stage(d_model=128, 
                   windowSize=(2 , 2),
                   heads=2,
                   poolingSize=(7 , 7), 
                   mlp_rate=2, 
                   mlp_windowSize=(3 , 3), 
                   layers=2,
                   dropout_rate=0.1),
        PVTV2Stage(d_model=320,
                   windowSize=(2 , 2), 
                   heads=5, 
                   poolingSize=(7 , 7), 
                   mlp_rate=2, 
                   mlp_windowSize=(3 , 3), 
                   layers=2, 
                   dropout_rate=0.1),
],
dropout=0.5)
PVT Params
  • num_of_classes: int
    number of classes used in the final prediction layer
  • stages: list of PVTV2Stage
    list of pvt v2 stages
  • dropout: float
    dropout rate used for the prediction head
PVTStage Params
  • d_model: int
    dimension used for the Linear SRA mechanism and the convolutional patch embedding
  • windowSize: tuple(int , int)
    window size used for the convolutional patch emebdding
  • heads: int
    number of heads in the Linear SRA mechanism
  • poolingSize: tuple(int , int)
    size of the K and V after the fixed pooling
  • mlp_rate: int
    expansion rate used in the convolutional feed-forward block
  • mlp_windowSize: tuple(int , int)
    the window size used for the depth-wise convolution in the convolutional feed-forward block
  • layers: int
    number of transformer encoders
  • dropout_rate: float
    dropout rate used in each transformer encoder

Inference

sampleInput = tf.random.normal(shape=(1 , 224 , 224 , 3))
output = pvtV2Model(sampleInput , training=False)
print(output.shape) # (1 , 1000)

Training

pvtV2Model.compile(
          loss=tf.keras.losses.SparseCategoricalCrossentropy(),
          optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
          metrics=[
                   tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
                   tf.keras.metrics.SparseTopKCategoricalAccuracy(k=5 , name="top_5_accuracy"),
          ])

pvtV2Model.fit(
          trainingData, #Tensorflow dataset of images and labels in shape of ((b , h , w , 3) , (b,))
          validation_data=valData, #The same as training
          epochs=100,)

DeiT

DeiT was introduced in Training Data-Efficient Image Transformers & Distillation Through Attention. Since original vision transformer is data hungry due to the lack of existance of any inductive bias (unlike CNNs) a lot of data is required to train original vision transformer in order to surpass the state-of-the-art CNNs such as Resnet. Therefore, in this paper authors used a pre-trained CNN such as resent during training and used a sepcial loss function to perform distillation through attention.

Usage

Defining the Model

from deit import DeiT
import tensorflow as tf

teacherModel = tf.keras.applications.ResNet50(include_top=True, 
                                              weights="imagenet", 
                                              input_shape=(224 , 224 , 3))

deitModel = DeiT(
                 num_classes=1000,
                 patch_size=16,
                 num_of_patches=(224//16)**2,
                 d_model=128,
                 heads=2,
                 num_layers=4,
                 mlp_rate=2,
                 teacherModel=teacherModel,
                 temperature=1.0, 
                 alpha=0.5,
                 hard=False, 
                 dropout_rate=0.1,
                 prediction_dropout=0.3,
)
Params
  • num_classes: int
    number of classes used for the final classification head
  • patch_size: int
    patch_size used for the tokenization
  • num_of_patches: int
    number of patches after the tokenization which is used for the positional encoding, Generally it can be computed by the following formula (((h-patch_size)//patch_size) + 1)*(((w-patch_size)//patch_size) + 1) where h is the height of the image and w is the width of the image. In addition, when height and width of the image are devisable by the patch_size the following formula can be used as well (h//patch_size)*(w//patch_size)
  • d_model: int
    hidden dimension of the transformer encoder and the demnesion used for patch embedding
  • heads: int
    number of heads used for the multi-head attention mechanism
  • num_layers: int
    number of blocks in encoder transformer
  • mlp_rate: int
    the rate of expansion in the feed-forward block of each transformer block (the dimension after expansion is mlp_rate * d_model)
  • teacherModel: Tensorflow Model
    the teacherModel used for the distillation during training, This model is a pre-trained CNN model with the same input_shape and output_shape as the Transformer
  • temperature: float
    the temperature parameter in the loss
  • alpha: float
    the coefficient balancing the Kullback–Leibler divergence loss (KL) and the cross-entropy loss
  • hard: bool
    indicates using Hard-label distillation or Soft distillation
  • dropout_rate: float
    dropout rate used in the multi-head attention mechanism
  • prediction_dropout: float
    dropout rate used in the final prediction head of the model

Inference

sampleInput = tf.random.normal(shape=(1 , 224 , 224 , 3))
output = deitModel(sampleInput , training=False)
print(output.shape) # (1 , 1000)

Training

#Note that the loss is defined inside the model and no loss should be passed here
deitModel.compile(
         optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
         metrics=[
                  tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
                  tf.keras.metrics.SparseTopKCategoricalAccuracy(k=5 , name="top_5_accuracy"),
         ])

deitModel.fit(
         trainingData, #Tensorflow dataset of images and labels in shape of ((b , h , w , 3) , (b , num_classes))
         validation_data=valData, #The same as training
         epochs=100,)
Owner
Mohammadmahdi NouriBorji
Mohammadmahdi NouriBorji
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022