Sample and Computation Redistribution for Efficient Face Detection

Overview

Introduction

SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv.

prcurve

Performance

Precision, flops and infer time are all evaluated on VGA resolution.

ResNet family

Method Backbone Easy Medium Hard #Params(M) #Flops(G) Infer(ms)
DSFD (CVPR19) ResNet152 94.29 91.47 71.39 120.06 259.55 55.6
RetinaFace (CVPR20) ResNet50 94.92 91.90 64.17 29.50 37.59 21.7
HAMBox (CVPR20) ResNet50 95.27 93.76 76.75 30.24 43.28 25.9
TinaFace (Arxiv20) ResNet50 95.61 94.25 81.43 37.98 172.95 38.9
- - - - - - - -
ResNet-34GF ResNet50 95.64 94.22 84.02 24.81 34.16 11.8
SCRFD-34GF Bottleneck Res 96.06 94.92 85.29 9.80 34.13 11.7
ResNet-10GF ResNet34x0.5 94.69 92.90 80.42 6.85 10.18 6.3
SCRFD-10GF Basic Res 95.16 93.87 83.05 3.86 9.98 4.9
ResNet-2.5GF ResNet34x0.25 93.21 91.11 74.47 1.62 2.57 5.4
SCRFD-2.5GF Basic Res 93.78 92.16 77.87 0.67 2.53 4.2

Mobile family

Method Backbone Easy Medium Hard #Params(M) #Flops(G) Infer(ms)
RetinaFace (CVPR20) MobileNet0.25 87.78 81.16 47.32 0.44 0.802 7.9
FaceBoxes (IJCB17) - 76.17 57.17 24.18 1.01 0.275 2.5
- - - - - - - -
MobileNet-0.5GF MobileNetx0.25 90.38 87.05 66.68 0.37 0.507 3.7
SCRFD-0.5GF Depth-wise Conv 90.57 88.12 68.51 0.57 0.508 3.6

X64 CPU Performance of SCRFD-0.5GF:

Test-Input-Size CPU Single-Thread Easy Medium Hard
Original-Size(scale1.0) - 90.91 89.49 82.03
640x480 28.3ms 90.57 88.12 68.51
320x240 11.4ms - - -

precision and infer time are evaluated on AMD Ryzen 9 3950X, using the simple PyTorch CPU inference by setting OMP_NUM_THREADS=1 (no mkldnn).

Installation

Please refer to mmdetection for installation.

  1. Install mmcv. (mmcv-full==1.2.6 and 1.3.3 was tested)
  2. Install build requirements and then install mmdet.
    pip install -r requirements/build.txt
    pip install -v -e .  # or "python setup.py develop"
    

Pretrained-Models

Name Easy Medium Hard FLOPs Params(M) Infer(ms) Link
SCRFD_500M 90.57 88.12 68.51 500M 0.57 3.6 download
SCRFD_1G 92.38 90.57 74.80 1G 0.64 4.1 download
SCRFD_2.5G 93.78 92.16 77.87 2.5G 0.67 4.2 download
SCRFD_10G 95.16 93.87 83.05 10G 3.86 4.9 download
SCRFD_34G 96.06 94.92 85.29 34G 9.80 11.7 download
SCRFD_500M_KPS 90.97 88.44 69.49 500M 0.57 3.6 download
SCRFD_2.5G_KPS 93.80 92.02 77.13 2.5G 0.82 4.3 download
SCRFD_10G_KPS 95.40 94.01 82.80 10G 4.23 5.0 download

mAP, FLOPs and inference latency are all evaluated on VGA resolution. _KPS means the model includes 5 keypoints prediction.

Convert to ONNX

Please refer to tools/scrfd2onnx.py

Generated onnx model can accept dynamic input as default.

You can also set specific input shape by pass --shape 640 640, then output onnx model can be optimized by onnx-simplifier.

Inference

Put your input images or videos in ./input directory. The output will be saved in ./output directory. In root directory of project, run the following command for image:

python inference_image.py --input "./input/test.jpg"

and for video:

python inference_video.py --input "./input/obama.mp4"

Use -sh for show results during code running or not

Note that you can pass some other arguments. Take a look at inference_video.py file.

Owner
Sajjad Aemmi
AI MSc Student at Ferdowsi University of Mashhad - Teacher - Machine Learning Engineer - WebDeveloper - Graphist
Sajjad Aemmi
Rethinking Nearest Neighbors for Visual Classification

Rethinking Nearest Neighbors for Visual Classification arXiv Environment settings Check out scripts/env_setup.sh Setup data Download the following fin

Menglin Jia 29 Oct 11, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
Implementation of RegretNet with Pytorch

Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network

Horris zhGu 1 Nov 05, 2021
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022