Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Overview

GRB

PyPi Latest Release Documentation Status License

Homepage | Paper | Datasets | Leaderboard | Documentation

Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evaluation on the adversarial robustness of graph machine learning models. GRB has elaborated datasets, unified evaluation pipeline, modular coding framework, and reproducible leaderboards, which facilitate the developments of graph adversarial learning, summarizing existing progress and generating insights into future research.

Updates

Get Started

Installation

Install grb via pip:

pip install grb

Install grb via git:

git clone [email protected]:THUDM/grb.git
cd grb
pip install -e .

Preparation

GRB provides all necessary components to ensure the reproducibility of evaluation results. Get datasets from link or download them by running the following script:

cd ./scripts
sh download_dataset.sh

Get attack results (adversarial adjacency matrix and features) from link or download them by running the following script:

sh download_attack_results.sh

Get saved models (model weights) from link or download them by running the following script:

sh download_saved_models.sh

Usage of GRB Modules

Training a GML model

An example of training Graph Convolutional Network (GCN) on grb-cora dataset.

import torch  # pytorch backend
from grb.dataset import Dataset
from grb.model.torch import GCN
from grb.trainer.trainer import Trainer

# Load data
dataset = Dataset(name='grb-cora', mode='easy',
                  feat_norm='arctan')
# Build model
model = GCN(in_features=dataset.num_features,
            out_features=dataset.num_classes,
            hidden_features=[64, 64])
# Training
adam = torch.optim.Adam(model.parameters(), lr=0.01)
trainer = Trainer(dataset=dataset, optimizer=adam,
                  loss=torch.nn.functional.nll_loss)
trainer.train(model=model, n_epoch=200, dropout=0.5,
              train_mode='inductive')

Adversarial attack

An example of applying Topological Defective Graph Injection Attack (TDGIA) on trained GCN model.

from grb.attack.injection.tdgia import TDGIA

# Attack configuration
tdgia = TDGIA(lr=0.01, 
              n_epoch=10,
              n_inject_max=20, 
              n_edge_max=20,
              feat_lim_min=-0.9, 
              feat_lim_max=0.9,
              sequential_step=0.2)
# Apply attack
rst = tdgia.attack(model=model,
                   adj=dataset.adj,
                   features=dataset.features,
                   target_mask=dataset.test_mask)
# Get modified adj and features
adj_attack, features_attack = rst

GRB Evaluation

Evaluation scenario (Injection Attack)

GRB

GRB provides a unified evaluation scenario for fair comparisons between attacks and defenses. The scenario is Black-box, Evasion, Inductive, Injection. Take the case of a citation-graph classification system for example. The platform collects labeled data from previous papers and trains a GML model. When a batch of new papers are submitted, it updates the graph and uses the trained model to predict labels for them.

  • Black-box: Both the attacker and the defender have no knowledge about the applied methods each other uses.
  • Evasion: Models are already trained in trusted data (e.g. authenticated users), which are untouched by the attackers but might have natural noises. Thus, attacks will only happen during the inference phase.
  • Inductive: Models are used to classify unseen data (e.g. new users), i.e. validation or test data are unseen during training, which requires models to generalize to out of distribution data.
  • Injection: The attackers can only inject new nodes but not modify the target nodes directly. Since it is usually hard to hack into users' accounts and modify their profiles. However, it is easier to create fake accounts and connect them to existing users.

GRB Leaderboard

GRB maintains leaderboards that permits a fair comparision across various attacks and defenses. To ensure the reproducibility, we provide all necessary information including datasets, attack results, saved models, etc. Besides, all results on the leaderboards can be easily reproduced by running the following scripts (e.g. leaderboard for grb-cora dataset):

sh run_leaderboard_pipeline.sh -d grb-cora -g 0 -s ./leaderboard -n 0
Usage: run_leaderboard_pipeline.sh [-d <string>] [-g <int>] [-s <string>] [-n <int>]
Pipeline for reproducing leaderboard on the chosen dataset.
    -h      Display help message.
    -d      Choose a dataset.
    -s      Set a directory to save leaderboard files.
    -n      Choose the number of an attack from 0 to 9.
    -g      Choose a GPU device. -1 for CPU.

Submission

We welcome researchers to submit new methods including attacks, defenses, or new GML models to enrich the GRB leaderboard. For future submissions, one should follow the GRB Evaluation Rules and respect the reproducibility.

Please submit your methods via the google form GRB submission. Our team will verify the result within a week.

Requirements

  • scipy==1.5.2
  • numpy==1.19.1
  • torch==1.8.0
  • networkx==2.5
  • pandas~=1.2.3
  • cogdl~=0.3.0.post1
  • scikit-learn~=0.24.1

Citing GRB

Please cite our paper if you find GRB useful for your research:

@article{zheng2021grb,
  title={Graph Robustness Benchmark: Benchmarking the Adversarial Robustness of Graph Machine Learning},
  author={Zheng, Qinkai and Zou, Xu and Dong, Yuxiao and Cen, Yukuo and Yin, Da and Xu, Jiarong and Yang, Yang and Tang, Jie},
  journal={Neural Information Processing Systems Track on Datasets and Benchmarks 2021},
  year={2021}
}

Contact

In case of any problem, please contact us via email: [email protected]. We also welcome researchers to join our Google Group for further discussion on the adversarial robustness of graph machine learning.

Comments
  • Issue on Duplicating Linked Nodes in PGD

    Issue on Duplicating Linked Nodes in PGD

    Hi GRB Team,

    When using the latest GRB codebase, I found an issue in your implementation of random injection. For example, in /attack/PGD.py, an array islinked is created but never used, which would lead to repeated connections and hence producing an adj_attack with fewer injected edges. May I know whether it is intended or a mistake? Thank you. 😀

    opened by LFhase 2
  • Bump numpy from 1.19.1 to 1.22.0

    Bump numpy from 1.19.1 to 1.22.0

    Bumps numpy from 1.19.1 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • release of model class codes?

    release of model class codes?

    Hi GRB team,

    I want to modify, e.g., add new layers, and fine-tune the existing robust models listed in the leaderboard. It would make things much easier if I can access these models' class codes i.e., model definitions. Wonder where I can download them?

    Thanks very much for your help! Best, Yang

    opened by songy0123 0
  • Can't reach the accuracy of leaderboard

    Can't reach the accuracy of leaderboard

    Hi, I tried to use the pipeline to reproduce the result of GRB leaderboard but can't reach the accuracy given by the paper and grb website. There is always a 2-5% gap between the paper and my experiment. Could you please provide the full code for reproducing?

    opened by jiqianwanbaichi 4
  • Import error Trainer in Train Pipeline

    Import error Trainer in Train Pipeline

    Hi,

    the following line throws an error:

    https://github.com/THUDM/grb/blob/master/pipeline/train_pipeline.py#L8

    Traceback (most recent call last):
      File "/nfs/homedirs/geisler/code/grb/pipeline/train_pipeline.py", line 8, in <module>
        from grb.utils import Trainer, Logger
    ImportError: cannot import name 'Trainer' from 'grb.utils' (/nfs/homedirs/geisler/code/grb/grb/utils/__init__.py)
    
    opened by sigeisler 1
Releases(v0.1.0)
  • v0.1.0(Aug 5, 2021)

    The first release of Graph Robustness Benchmark (GRB).

    • API based on pure PyTorch, CogDL, and DGL.
    • Include five graph datasets of different scales.
    • Support graph injection attacks (e.g., RND, FGSM, PGS, SPEIT, TDGIA).
    • Support adversarial defenses (e.g., layer normalization, adversarial training, GNNSVD, GNNGuard).
    • Provide homepage.
    • Provide leaderboards of all datasets.
    • Provide basic documentation.
    • Provide scripts for reproducing results.
    Source code(tar.gz)
    Source code(zip)
Owner
THUDM
Data Mining Research Group at Tsinghua University
THUDM
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022