ML-Decoder: Scalable and Versatile Classification Head

Overview

ML-Decoder: Scalable and Versatile Classification Head

PWC
PWC
PWC


Paper

Official PyTorch Implementation

Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baruch, Asaf Noy
DAMO Academy, Alibaba Group

Abstract

In this paper, we introduce ML-Decoder, a new attention-based classification head. ML-Decoder predicts the existence of class labels via queries, and enables better utilization of spatial data compared to global average pooling. By redesigning the decoder architecture, and using a novel group-decoding scheme, ML-Decoder is highly efficient, and can scale well to thousands of classes. Compared to using a larger backbone, ML-Decoder consistently provides a better speed-accuracy trade-off. ML-Decoder is also versatile - it can be used as a drop-in replacement for various classification heads, and generalize to unseen classes when operated with word queries. Novel query augmentations further improve its generalization ability. Using ML-Decoder, we achieve state-of-the-art results on several classification tasks: on MS-COCO multi-label, we reach 91.4% mAP; on NUS-WIDE zero-shot, we reach 31.1% ZSL mAP; and on ImageNet single-label, we reach with vanilla ResNet50 backbone a new top score of 80.7%, without extra data or distillation.

ML-Decoder Implementation

ML-Decoder implementation is available here. It can be easily integrated into any backbone using this example code:

ml_decoder_head = MLDecoder(num_classes) # initilization

spatial_embeddings = self.backbone(input_image) # backbone generates spatial embeddings      
 
logits = ml_decoder_head(spatial_embeddings) # transfrom spatial embeddings to logits

Training Code

We will share a full reproduction code for the article results.

Multi-label Training Code


A reproduction code for MS-COCO multi-label:

python train.py  \
--data=/home/datasets/coco2014/ \
--model_name=tresnet_l \
--image_size=448

Single-label Training Code

Our single-label training code uses the excellent timm repo. Reproduction code is currently from a fork, we will work toward a full merge to the main repo.

git clone https://github.com/mrT23/pytorch-image-models.git

This is the code for A2 configuration training, with ML-Decoder (--use-ml-decoder-head=1):

python -u -m torch.distributed.launch --nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
./train.py \
/data/imagenet/ \
--amp \
-b=256 \
--epochs=300 \
--drop-path=0.05 \
--opt=lamb \
--weight-decay=0.02 \
--sched='cosine' \
--lr=4e-3 \
--warmup-epochs=5 \
--model=resnet50 \
--aa=rand-m7-mstd0.5-inc1 \
--reprob=0.0 \
--remode='pixel' \
--mixup=0.1 \
--cutmix=1.0 \
--aug-repeats 3 \
--bce-target-thresh 0.2 \
--smoothing=0 \
--bce-loss \
--train-interpolation=bicubic \
--use-ml-decoder-head=1

ZSL Training Code

Reproduction code for ZSL is WIP.

Citation

@misc{ridnik2021mldecoder,
      title={ML-Decoder: Scalable and Versatile Classification Head}, 
      author={Tal Ridnik and Gilad Sharir and Avi Ben-Cohen and Emanuel Ben-Baruch and Asaf Noy},
      year={2021},
      eprint={2111.12933},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023