Chinese named entity recognization with BiLSTM using Keras

Overview

Chinese named entity recognization (Bilstm with Keras)

Project Structure

./
├── README.md
├── data
│   ├── README.md
│   ├── data							数据集
│   │   ├── test.txt
│   │   └── train.txt
│   ├── plain_text.txt
│   └── vocab.txt                       词表
├── evaluate
│   ├── __init__.py
│   └── f1_score.py                     计算实体F1得分
├── keras_contrib                       keras_contrib包,也可以pip装
├── log                                 训练nohup日志
│   ├── __init__.py
│   └── nohup.out
├── model                               模型
│   ├── BiLSTMCRF.py
│   ├── __init__.py
│   └── __pycache__
├── predict                             输出预测
│   ├── __init__.py
│   ├── __pycache__
│   ├── predict.py
│   └── predict_process.py
├── preprocess                          数据预处理
│   ├── README.md
│   ├── __pycache__
│   ├── convert_jsonl.py
│   ├── data_add_line.py
│   ├── generate_vocab.py               生成词表
│   ├── process_data.py                 数据处理转换
│   ├── splite.py
│   └── vocab.py                        词表对应工具
├── public
│   ├── __init__.py
│   ├── __pycache__
│   ├── config.py                       训练设置
│   ├── generate_label_id.py            生成label2id文件
│   ├── label2id.json                   标签dict
│   ├── path.py                         所有路径
│   └── utils.py                        小工具
├── report
│   └── report.out                      F1评估报告
├── train.py
└── weight                              保存的权重
    └── bilstm_ner.h5

52 directories, 214 files

Dataset

三甲医院肺结节数据集,20000+字,BIO格式,形如:

中	B-ORG
共	I-ORG
中	I-ORG
央	I-ORG
致	O
中	B-ORG
国	I-ORG
致	I-ORG
公	I-ORG
党	I-ORG
十	I-ORG
一	I-ORG
大	I-ORG
的	O
贺	O
词	O

ATTENTION: 在处理自己数据集的时候需要注意:

  • 字与标签之间用tab("\t")隔开
  • 其中句子与句子之间使用空行隔开

Steps

  1. 替换数据集
  2. 修改public/path.py中的地址
  3. 使用public/generate_label_id.py生成label2id.txt文件,将其中的内容填到preprocess/vocab.py的get_tag2index中。注意:序号必须从0开始
  4. 修改public/config.py中的MAX_LEN(超过截断,少于填充,最好设置训练集、测试集中最长句子作为MAX_LEN)
  5. 运行preprocess/generate_vocab.py生成词表,词表按词频生成
  6. 根据需要修改BiLSTMCRF.py模型结构
  7. 修改public/config.py的参数
  8. 训练前debug看下train_data,train_label对不对
  9. 训练

Model

_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, None)              0
_________________________________________________________________
embedding_1 (Embedding)      (None, None, 128)         81408
_________________________________________________________________
bidirectional_1 (Bidirection (None, None, 256)         263168
_________________________________________________________________
dropout_1 (Dropout)          (None, None, 256)         0
_________________________________________________________________
bidirectional_2 (Bidirection (None, None, 128)         164352
_________________________________________________________________
dropout_2 (Dropout)          (None, None, 128)         0
_________________________________________________________________
time_distributed_1 (TimeDist (None, None, 29)          3741
_________________________________________________________________
dropout_3 (Dropout)          (None, None, 29)          0
_________________________________________________________________
crf_1 (CRF)                  (None, None, 29)          1769
=================================================================
Total params: 514,438
Trainable params: 514,438
Non-trainable params: 0
_________________________________________________________________

Train

运行train.py

Epoch 1/500
806/806 [==============================] - 15s 18ms/step - loss: 2.4178 - crf_viterbi_accuracy: 0.9106

Epoch 00001: loss improved from inf to 2.41777, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 2/500
806/806 [==============================] - 10s 13ms/step - loss: 0.6370 - crf_viterbi_accuracy: 0.9106

Epoch 00002: loss improved from 2.41777 to 0.63703, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 3/500
806/806 [==============================] - 11s 14ms/step - loss: 0.5295 - crf_viterbi_accuracy: 0.9106

Epoch 00003: loss improved from 0.63703 to 0.52950, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 4/500
806/806 [==============================] - 11s 13ms/step - loss: 0.4184 - crf_viterbi_accuracy: 0.9064

Epoch 00004: loss improved from 0.52950 to 0.41838, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 5/500
806/806 [==============================] - 12s 14ms/step - loss: 0.3422 - crf_viterbi_accuracy: 0.9104

Epoch 00005: loss improved from 0.41838 to 0.34217, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 6/500
806/806 [==============================] - 10s 13ms/step - loss: 0.3164 - crf_viterbi_accuracy: 0.9106

Epoch 00006: loss improved from 0.34217 to 0.31637, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 7/500
806/806 [==============================] - 10s 12ms/step - loss: 0.3003 - crf_viterbi_accuracy: 0.9111

Epoch 00007: loss improved from 0.31637 to 0.30032, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 8/500
806/806 [==============================] - 10s 12ms/step - loss: 0.2906 - crf_viterbi_accuracy: 0.9117

Epoch 00008: loss improved from 0.30032 to 0.29058, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 9/500
806/806 [==============================] - 9s 12ms/step - loss: 0.2837 - crf_viterbi_accuracy: 0.9118

Epoch 00009: loss improved from 0.29058 to 0.28366, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 10/500
806/806 [==============================] - 9s 11ms/step - loss: 0.2770 - crf_viterbi_accuracy: 0.9142

Epoch 00010: loss improved from 0.28366 to 0.27696, saving model to /home/bureaux/Projects/BiLSTMCRF_TimeDistribute/weight/bilstm_ner.h5
Epoch 11/500
806/806 [==============================] - 10s 12ms/step - loss: 0.2713 - crf_viterbi_accuracy: 0.9160

Evaluate

运行evaluate/f1_score.py

100%|█████████████████████████████████████████| 118/118 [00:38<00:00,  3.06it/s]
TP: 441
TP+FP: 621
precision: 0.7101449275362319
TP+FN: 604
recall: 0.7301324503311258
f1: 0.72

classification report:
              precision    recall  f1-score   support

     ANATOMY       0.74      0.75      0.74       220
    BOUNDARY       1.00      0.75      0.86         8
     DENSITY       0.78      0.88      0.82         8
    DIAMETER       0.82      0.88      0.85        16
     DISEASE       0.54      0.72      0.62        43
   LUNGFIELD       0.83      0.83      0.83         6
      MARGIN       0.57      0.67      0.62         6
      NATURE       0.00      0.00      0.00         6
       ORGAN       0.62      0.62      0.62        13
    QUANTITY       0.88      0.87      0.87        83
       SHAPE       1.00      0.43      0.60         7
        SIGN       0.66      0.65      0.65       189
     TEXTURE       0.75      0.43      0.55         7
   TREATMENT       0.25      0.33      0.29         9

   micro avg       0.71      0.71      0.71       621
   macro avg       0.67      0.63      0.64       621
weighted avg       0.71      0.71      0.71       621

Predict

运行predict/predict_bio.py

Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022