Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Overview

Tensor Component Analysis for Interpreting the Latent Space of GANs

[ paper | project page ]

Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

./images/teaser.png

dependencies

Firstly, to install the required packages, please run:

$ pip install -r requirements.txt

Pretrained weights

To replicate the results in the paper, you'll need to first download the pre-trained weights. To do so, simply run this from the command line:

./download_weights.sh

Quantitative results

building the prediction matrices

To reproduce Fig. 5, one can then run the ./quant.ipynb notebook using the pre-computed classification scores (please see this notebook for more details).

manually computing predictions

To call the Microsoft Azure Face API to generate the predictions again from scratch, one can run the shell script in ./quant/classify.sh. Firstly however, you need to generate our synthetic images to classify, which we detail below.

Qualitative results

generating the images

Reproducing the qualitative results (i.e. in Fig. 6) involves generating synthetic faces and 3 edited versions with the 3 attributes of interest (hair colour, yaw, and pitch). To generate these images (which are also used for the quantitative results), simply run:

$ ./generate_quant_edits.sh

mode-wise edits

./images/116-blonde.gif ./images/116-yaw.gif ./images/116-pitch.gif

Manual edits along individual modes of the tensor are made by calling main.py with the --mode edit_modewise flag. For example, one can reproduce the images from Fig. 3 with:

$ python main.py --cp_rank 0 --tucker_ranks "4,4,4,512" --model_name pggan_celebahq1024 --penalty_lam 0.001 --resume_iters 1000
  --n_to_edit 10 \
  --mode edit_modewise \
  --attribute_to_edit male

multilinear edits

./images/thick.gif

Edits achieved with the 'multilinear mixing' are achieved instead by loading the relevant weights and supplying the --mode edit_multilinear flag. For example, the images in Fig. 4 are generated with:

$ python main.py --cp_rank 0 --tucker_ranks "256,4,4,512" --model_name pggan_celebahq1024 --penalty_lam 0.001 --resume_iters 200000
  --n_to_edit 10 \
  --mode edit_multilinear \
  --attribute_to_edit thick

Please feel free to get in touch at: [email protected], where x=oldfield


credits

All the code in ./architectures/ and utils.py is directly imported from https://github.com/genforce/genforce, only lightly modified to support performing the forward pass through the models partially, and returning the intermediate tensors.

The structure of the codebase follows https://github.com/yunjey/stargan, and hence we use their code as a template to build off. For this reason, you will find small helper functions (e.g. the first few lines of main.py) are borrowed from the StarGAN codebase.

Owner
James Oldfield
James Oldfield
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022