Videocaptioning.pytorch - A simple implementation of video captioning

Overview

pytorch implementation of video captioning

recommend installing pytorch and python packages using Anaconda

This code is based on video-caption.pytorch

requirements (my environment, other versions of pytorch and torchvision should also support this code (not been verified!))

  • cuda
  • pytorch 1.7.1
  • torchvision 0.8.2
  • python 3
  • ffmpeg (can install using anaconda)

python packages

  • tqdm
  • pillow
  • nltk

Data

MSR-VTT. Download and put them in ./data/msr-vtt-data directory

|-data
  |-msr-vtt-data
    |-train-video
    |-test-video
    |-annotations
      |-train_val_videodatainfo.json
      |-test_videodatainfo.json

MSVD. Download and put them in ./data/msvd-data directory

|-data
  |-msvd-data
    |-YouTubeClips
    |-annotations
      |-AllVideoDescriptions.txt

Options

all default options are defined in opt.py or corresponding code file, change them for your like.

Acknowledgements

Some code refers to ImageCaptioning.pytorch

Usage

(Optional) c3d features (not verified)

you can use video-classification-3d-cnn-pytorch to extract features from video.

Steps

  1. preprocess MSVD annotations (convert txt file to json file)

refer to data/msvd-data/annotations/prepro_annotations.ipynb

  1. preprocess videos and labels
# For MSR-VTT dataset
# Train and Validata set
CUDA_VISIBLE_DEVICES=0 python prepro_feats.py \
    --video_path ./data/msr-vtt-data/train-video \
    --video_suffix mp4 \
    --output_dir ./data/msr-vtt-data/resnet152 \
    --model resnet152 \
    --n_frame_steps 40

# Test set
CUDA_VISIBLE_DEVICES=0 python prepro_feats.py \
    --video_path ./data/msr-vtt-data/test-video \
    --video_suffix mp4 \
    --output_dir ./data/msr-vtt-data/resnet152 \
    --model resnet152 \
    --n_frame_steps 40

python prepro_vocab.py \
    --input_json data/msr-vtt-data/annotations/train_val_videodatainfo.json data/msr-vtt-data/annotations/test_videodatainfo.json \
    --info_json data/msr-vtt-data/info.json \
    --caption_json data/msr-vtt-data/caption.json \
    --word_count_threshold 4

# For MSVD dataset
CUDA_VISIBLE_DEVICES=0 python prepro_feats.py \
    --video_path ./data/msvd-data/YouTubeClips \
    --video_suffix avi \
    --output_dir ./data/msvd-data/resnet152 \
    --model resnet152 \
    --n_frame_steps 40

python prepro_vocab.py \
    --input_json data/msvd-data/annotations/MSVD_annotations.json \
    --info_json data/msvd-data/info.json \
    --caption_json data/msvd-data/caption.json \
    --word_count_threshold 2
  1. Training a model
# For MSR-VTT dataset
CUDA_VISIBLE_DEVICES=0 python train.py \
    --epochs 1000 \
    --batch_size 300 \
    --checkpoint_path data/msr-vtt-data/save \
    --input_json data/msr-vtt-data/annotations/train_val_videodatainfo.json \
    --info_json data/msr-vtt-data/info.json \
    --caption_json data/msr-vtt-data/caption.json \
    --feats_dir data/msr-vtt-data/resnet152 \
    --model S2VTAttModel \
    --with_c3d 0 \
    --dim_vid 2048

# For MSVD dataset
CUDA_VISIBLE_DEVICES=0 python train.py \
    --epochs 1000 \
    --batch_size 300 \
    --checkpoint_path data/msvd-data/save \
    --input_json data/msvd-data/annotations/train_val_videodatainfo.json \
    --info_json data/msvd-data/info.json \
    --caption_json data/msvd-data/caption.json \
    --feats_dir data/msvd-data/resnet152 \
    --model S2VTAttModel \
    --with_c3d 0 \
    --dim_vid 2048
  1. test

    opt_info.json will be in same directory as saved model.

# For MSR-VTT dataset
CUDA_VISIBLE_DEVICES=0 python eval.py \
    --input_json data/msr-vtt-data/annotations/test_videodatainfo.json \
    --recover_opt data/msr-vtt-data/save/opt_info.json \
    --saved_model data/msr-vtt-data/save/model_xxx.pth \
    --batch_size 100

# For MSVD dataset
CUDA_VISIBLE_DEVICES=0 python eval.py \
    --input_json data/msvd-data/annotations/test_videodatainfo.json \
    --recover_opt data/msvd-data/save/opt_info.json \
    --saved_model data/msvd-data/save/model_xxx.pth \
    --batch_size 100

NOTE

This code is just a simple implementation of video captioning. And I have not verify whether the SCST training process and C3D feature are useful!

Acknowledgements

Some code refers to ImageCaptioning.pytorch

Owner
Yiyu Wang
Yiyu Wang
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Mehdi KOŞACA 2 Dec 30, 2021
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023