Videocaptioning.pytorch - A simple implementation of video captioning

Overview

pytorch implementation of video captioning

recommend installing pytorch and python packages using Anaconda

This code is based on video-caption.pytorch

requirements (my environment, other versions of pytorch and torchvision should also support this code (not been verified!))

  • cuda
  • pytorch 1.7.1
  • torchvision 0.8.2
  • python 3
  • ffmpeg (can install using anaconda)

python packages

  • tqdm
  • pillow
  • nltk

Data

MSR-VTT. Download and put them in ./data/msr-vtt-data directory

|-data
  |-msr-vtt-data
    |-train-video
    |-test-video
    |-annotations
      |-train_val_videodatainfo.json
      |-test_videodatainfo.json

MSVD. Download and put them in ./data/msvd-data directory

|-data
  |-msvd-data
    |-YouTubeClips
    |-annotations
      |-AllVideoDescriptions.txt

Options

all default options are defined in opt.py or corresponding code file, change them for your like.

Acknowledgements

Some code refers to ImageCaptioning.pytorch

Usage

(Optional) c3d features (not verified)

you can use video-classification-3d-cnn-pytorch to extract features from video.

Steps

  1. preprocess MSVD annotations (convert txt file to json file)

refer to data/msvd-data/annotations/prepro_annotations.ipynb

  1. preprocess videos and labels
# For MSR-VTT dataset
# Train and Validata set
CUDA_VISIBLE_DEVICES=0 python prepro_feats.py \
    --video_path ./data/msr-vtt-data/train-video \
    --video_suffix mp4 \
    --output_dir ./data/msr-vtt-data/resnet152 \
    --model resnet152 \
    --n_frame_steps 40

# Test set
CUDA_VISIBLE_DEVICES=0 python prepro_feats.py \
    --video_path ./data/msr-vtt-data/test-video \
    --video_suffix mp4 \
    --output_dir ./data/msr-vtt-data/resnet152 \
    --model resnet152 \
    --n_frame_steps 40

python prepro_vocab.py \
    --input_json data/msr-vtt-data/annotations/train_val_videodatainfo.json data/msr-vtt-data/annotations/test_videodatainfo.json \
    --info_json data/msr-vtt-data/info.json \
    --caption_json data/msr-vtt-data/caption.json \
    --word_count_threshold 4

# For MSVD dataset
CUDA_VISIBLE_DEVICES=0 python prepro_feats.py \
    --video_path ./data/msvd-data/YouTubeClips \
    --video_suffix avi \
    --output_dir ./data/msvd-data/resnet152 \
    --model resnet152 \
    --n_frame_steps 40

python prepro_vocab.py \
    --input_json data/msvd-data/annotations/MSVD_annotations.json \
    --info_json data/msvd-data/info.json \
    --caption_json data/msvd-data/caption.json \
    --word_count_threshold 2
  1. Training a model
# For MSR-VTT dataset
CUDA_VISIBLE_DEVICES=0 python train.py \
    --epochs 1000 \
    --batch_size 300 \
    --checkpoint_path data/msr-vtt-data/save \
    --input_json data/msr-vtt-data/annotations/train_val_videodatainfo.json \
    --info_json data/msr-vtt-data/info.json \
    --caption_json data/msr-vtt-data/caption.json \
    --feats_dir data/msr-vtt-data/resnet152 \
    --model S2VTAttModel \
    --with_c3d 0 \
    --dim_vid 2048

# For MSVD dataset
CUDA_VISIBLE_DEVICES=0 python train.py \
    --epochs 1000 \
    --batch_size 300 \
    --checkpoint_path data/msvd-data/save \
    --input_json data/msvd-data/annotations/train_val_videodatainfo.json \
    --info_json data/msvd-data/info.json \
    --caption_json data/msvd-data/caption.json \
    --feats_dir data/msvd-data/resnet152 \
    --model S2VTAttModel \
    --with_c3d 0 \
    --dim_vid 2048
  1. test

    opt_info.json will be in same directory as saved model.

# For MSR-VTT dataset
CUDA_VISIBLE_DEVICES=0 python eval.py \
    --input_json data/msr-vtt-data/annotations/test_videodatainfo.json \
    --recover_opt data/msr-vtt-data/save/opt_info.json \
    --saved_model data/msr-vtt-data/save/model_xxx.pth \
    --batch_size 100

# For MSVD dataset
CUDA_VISIBLE_DEVICES=0 python eval.py \
    --input_json data/msvd-data/annotations/test_videodatainfo.json \
    --recover_opt data/msvd-data/save/opt_info.json \
    --saved_model data/msvd-data/save/model_xxx.pth \
    --batch_size 100

NOTE

This code is just a simple implementation of video captioning. And I have not verify whether the SCST training process and C3D feature are useful!

Acknowledgements

Some code refers to ImageCaptioning.pytorch

Owner
Yiyu Wang
Yiyu Wang
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022