An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

Overview

CNN-Filter-DB

An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters
Paul Gavrikov, Janis Keuper

Distribution shifts of trained 3x3 convolution filters

Paper: https://openreview.net/forum?id=2st0AzxC3mh

Abstract: We present first empirical results from our ongoing investigation of distribution shifts in image data used for various computer vision tasks. Instead of analyzing the original training and test data, we propose to study shifts in the learned weights of trained models. In this work, we focus on the properties of the distributions of dominantly used 3x3 convolution filter kernels. We collected and publicly provide a data set with over half a billion filters from hundreds of trained CNNs, using a wide range of data sets, architectures, and vision tasks. Our analysis shows interesting distribution shifts (or the lack thereof) between trained filters along different axes of meta-parameters, like data type, task, architecture, or layer depth. We argue, that the observed properties are a valuable source for further investigation into a better understanding of the impact of shifts in the input data to the generalization abilities of CNN models and novel methods for more robust transfer-learning in this domain.

Versions

Number Changes
v1.0 Initial dataset as presented in the NeurIPS 2021 DistShift Workshop

Environment

We have executed this with Python 3.8.8 on Linux 3.10.0-1160.24.1.el7.x86_64. The scripts should however work with most python3 versions and OS.

To install all necessary modules please run:

pip install -r requirements.txt

or install these modules manually with your desired package manager:

numpy==1.21.2
scipy
scikit-learn==0.24.1
matplotlib==3.4.1
pandas==1.1.4
fast-histogram==0.10
KDEpy==1.1.0
tqdm==4.53.0
colorcet==2.0.6
h5py==3.1.0
tables==3.6.1

Prepare

Download dataset.h5 from https://kaggle.com/paulgavrikov/cnn-filter-db. This file contains the filters and meta information as individual datasets.

The filters are linked as a Nx9 numpy.float32 array under the /filter dataset. Every row is one filter and the row number is also the filter ID (i.e. the first row is filter ID 0). To reshape a filter f back to its original shape use f.reshape(3, 3).

The meta information is stored as a pandas.DataFrame under /meta. Following is an out of order list of column keys with a short description. Other column keys can and should be ignored. The table has a Multiindex on [model_id, conv_depth, conv_depth].

Column Description
model_id Unique int ID of the model.
conv_depth Convolution depth of the extracted filter i.e. how many convolution layers were hierarchically below the layer this filter was extracted from.
conv_depth_norm Similar to conv_depth but normalized by the maximum conv_depth. Will be a flaot betwenn 0 (first layers) .. 1 (towards head).
filter_ids List of Filter IDs that belong to this record. These can directly be mapped to the rows of the filter array.
model Unique string ID of the model. Typically, but not reliably in the format {name}{trainingset}{onnx opset}.
producer Producer of the ONNX export. Typically various versions of PyTorch.
op_set Version of the ONNX operator set used for export.
depth Total hierarchical depth of the model including all layers.
Name Name of the model. Not necessarily unique.
Paper Link to the Paper. Not always populated.
Pretraining-Dataset Name of the pretraining dataset(s) if pretrained. Multiple datr sets are seperated by commas.
Training-Dataset Name of the training dataset(s). Multiple datr sets are seperated by commas.
Datatype Visual, manual categorization of the training datatsets.
Task Task of the model.
Accessible Represents where the model can be found. Typically this is a link to GitHub.
Dataset URL URL of the training dataset. Usually only entered for exotic datasets.
total_filters Total number of convolution filters in this model.
3x3_filter_share The share of 3x3 filters compared to all other conv filters.
(X, Y) filters Represents how often filters of shape (X, Y) were found in the source model.
Conv, Add, Relu, MaxPool, Reshape, MatMul, Transpose, BatchNormalization, Concat, Shape, Gather, Softmax, Slice, Unsqueeze, Mul, Exp, Sub, Div, Pad, InstanceNormalization, Upsample, Cast, Floor, Clip, ReduceMean, LeakyRelu, ConvTranspose, Tanh, GlobalAveragePool, Gemm, ConstantOfShape, Flatten, Squeeze, Less, Loop, Split, Min, Tile, Sigmoid, NonMaxSuppression, TopK, ReduceMin, AveragePool, Dropout, Where, Equal, Expand, Pow, Sqrt, Erf, Neg, Resize, LRN, LogSoftmax, Identity, Ceil, Round, Elu, Log, Range, GatherElements, ScatterND, RandomNormalLike, PRelu, Sum, ReduceSum, NonZero, Not Represents how often this ONNX operator was found in the original model. Please note that individual operators may have been fused in later ONNX opsets.

Run

Adjust dataset_path in https://github.com/paulgavrikov/CNN-Filter-DB/blob/main/main.ipynb and run the cells.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{
gavrikov2021an,
title={An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters},
author={Gavrikov, Paul and Keuper, Janis},
booktitle={NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications},
year={2021},
url={https://openreview.net/forum?id=2st0AzxC3mh}
}
Owner
Paul Gavrikov
Paul Gavrikov
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty β’Έβ“„β“‹β’Ύβ’Ή-①⑨ (MyFirstCTF Only) Reverse Baby β˜… Piano Reverse C#, .NET β˜…

6 Oct 28, 2021
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments πŸ˜€ πŸ˜ƒ πŸ˜† Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023