This is an early in-development version of training CLIP models with hivemind.

Overview

A transformer that does not hog your GPU memory

This is an early in-development codebase: if you want a stable and documented hivemind codebase, look at CALM or dalle-hivemind.

Readme under construction

LeanTransformer implements a specific version of transformer with two goals in mind:

  • using as little GPU memory as possible
  • stable training for very large models

The core philosophy of LeanTransformer is to replace torch.autograd with grad students. Automatic differentiation is great if you want to test ideas quickly, less so if a single training run can cost over $4 million (or >1000 years in grad school).

Related work: GSO

Our implementation partially replaces automatic differentiation with Grad Student Optimization (GSO) - a biologically inspired black box optimization algorithm. In the past, GSO has seen widespread adoption thanks to its strong theoretical foundations and unparalleled cost efficiency (Chom et al). Previous successfully applied GSO for hyperparameter tuning and natural language generation. To the best of our knowledge we are the first work to successfully apply distributed fault-tolerant GSO for optimizing the memory footprint of transformers. We summarize our findings below:

Memory saving features:

Other features:

Not implemented:

  • In reversible mode, one can further save memory by computing backward in chunks:
    • a few tokens at a time for feedforward layers, since grad(concat(mlp(x1), mlp(x2))) = concat(grad(mlp(x1)), grad(mlp(x2)))
    • a few heads at a time for self-attention, since grad(head1 + head2) = grad(head1) + grad(head2), where head1 and head2 are attention outputs after linear projection
  • Attention could be computed in O(sqrt(n)) memory (Rabe et al, 2021)
  • No sparse or linear attention: they are great for very long sequences. However, for large models, attention is not a bottleneck in typical NLP and vision tasks (tested gpt-3 up to length 4096).
  • Per-block grad scaling as described in (Ramesh et al, 2021) - we rely on Sandwich Norm to maintain stability up to 96 layers (did not test more). However, it would be nice to have per-block scaling to avoid the need for an extra LayerNorm.
  • Something else that we missed - please find us on discord.

A day will come a day when we explain all these modifications and provide instructions on how to tune them. But it is not this day!. Until then, we'll happily answer any questions on our discord.

Running the code

[under constructuion] - use the instructions from CALM readme

Acknowledgements:

  • Most of the architecture and stability optimizations were learned through the BigScience research workshop
  • YSDA community helped us survive through the early messy versions of this code
  • NeuroPark trained the first practical model (SahajBERT-XL, SoTA in bengali, details here)
  • TODO DALLE community: at least mention the demo, maybe we end up training something even cooler
  • TODO NCAI community: ask them how best to acknowledge them
  • TODO Hugging Face: ask them how best to acknowledge them
  • TODO Personal: stas00, samyam, jared, more? (this does not include co-authors: Tim,Lucile,Quentin,Denis,Gennady,etc; also, this does not include hivemind contributors)
Owner
<a href=[email protected]">
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022