The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Overview

Joint t-sne

This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

abstract:

We present Joint t-Stochastic Neighbor Embedding (Joint t-SNE), a technique to generate comparable projections of multiple high-dimensional datasets. Although t-SNE has been widely employed to visualize high-dimensional datasets from various domains, it is limited to projecting a single dataset. When a series of high-dimensional datasets, such as datasets changing over time, is projected independently using t-SNE, misaligned layouts are obtained. Even items with identical features across datasets are projected to different locations, making the technique unsuitable for comparison tasks. To tackle this problem, we introduce edge similarity, which captures the similarities between two adjacent time frames based on the Graphlet Frequency Distribution (GFD). We then integrate a novel loss term into the t-SNE loss function, which we call vector constraints, to preserve the vectors between projected points across the projections, allowing these points to serve as visual landmarks for direct comparisons between projections. Using synthetic datasets whose ground-truth structures are known, we show that Joint t-SNE outperforms existing techniques, including Dynamic t-SNE, in terms of local coherence error, Kullback-Leibler divergence, and neighborhood preservation. We also showcase a real-world use case to visualize and compare the activation of different layers of a neural network.

Environment:

How to use:

  1. Put the directory of your data sequence, e.g. "YOUR_DATA" in ./data. There are several requirements on the format and organization of your data:

    • Each data frame is named as f_i.txt, where i is the time step/index of this data frame in the sequence.
    • The j th row of the data frame contains both the feature vector and label of the j th item, which is seperated by \tab. The label is at the last position.
    • All data frames must have the same number of rows, and the the same item is at the same row in different data frames to compute the node similarities one by one.
  2. Create a configuration file, e.g. "YOUR_DATA.json" in ./config, which is organized as a json structure.

{
  "algo": {
    "k_closest_count": 3,
    "perplexity": 70,
    "bfs_level": 1,
    "gamma": 0.1
  },
  "thesne": {
    "data_name": "YOUR_DATA",
    "pts_size": 2000,
    "norm": false,
    "data_ids": [1, 3, 6, 9],
    "data_dims": [100, 100, 100, 100, 100, 100, 100, 100, 100, 100],
    "data_titles": [
      "t=0",
      "t=1",
      "t=2",
      "t=3",
      "t=4",
      "t=5",
      "t=6",
      "t=7",
      "t=8",
      "t=9"
    ]
  }
}

In this file, algo represents the hyperparamters of our algorithm except for bfs_level, which always equals to 1. thesne contains the information of the input data. Please remember that data_name must be consistent with the directory name in the previous step.

  1. Create a shell script, e.g. "YOUR_DATA.sh" in ./scripts as below:
# !/bin/bash
# 1. specify the path of the configuration file
config_path="config/YOUR_DATA.json"

workdir=$(pwd)

# 2. build knn graph for each data frame
python3 codes/graphBuild/run.py $config_path

# 3. compute edge similarities between each two adjacent data frames
buildDir="codes/graphSim/build"
if [ ! -d $buildDir ]; then
    mkdir $buildDir
    echo "create directory ${buildDir}"
else
    echo "directory ${buildDir} already exists."
fi
cd $buildDir
qmake ../
make

cd $workdir

# bin is dependent on your operating system
bin=$buildDir/graphSim.app/Contents/MacOS/graphSim
$bin $config_path


# 4. run t-sne optimization
python3 codes/thesne/run.py $config_path

There are several places you should pay attention to.

  • Again, config_path must be consitent with the name of configuration file in the previous step

  • bin is dependent on your operating system. If you use linux, you probably should change it to

      bin=$buildDir/graphSim
    
  1. In root directory, type
sh scripts/YOUR_DATA.sh

The final embeddings will be generated in ./results/YOUR_DATA.

  1. Optionally, you can use codes/draw/run.py to plot the embeddings.

Example:

You can find an example in ./scripts/10_cluster_contract.sh.

Owner
IDEAS Lab
Our mission is to enhance people's ability to understand and communicate data through the design of automated visualization and visual analytics systems.
IDEAS Lab
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022