The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Overview

Joint t-sne

This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

abstract:

We present Joint t-Stochastic Neighbor Embedding (Joint t-SNE), a technique to generate comparable projections of multiple high-dimensional datasets. Although t-SNE has been widely employed to visualize high-dimensional datasets from various domains, it is limited to projecting a single dataset. When a series of high-dimensional datasets, such as datasets changing over time, is projected independently using t-SNE, misaligned layouts are obtained. Even items with identical features across datasets are projected to different locations, making the technique unsuitable for comparison tasks. To tackle this problem, we introduce edge similarity, which captures the similarities between two adjacent time frames based on the Graphlet Frequency Distribution (GFD). We then integrate a novel loss term into the t-SNE loss function, which we call vector constraints, to preserve the vectors between projected points across the projections, allowing these points to serve as visual landmarks for direct comparisons between projections. Using synthetic datasets whose ground-truth structures are known, we show that Joint t-SNE outperforms existing techniques, including Dynamic t-SNE, in terms of local coherence error, Kullback-Leibler divergence, and neighborhood preservation. We also showcase a real-world use case to visualize and compare the activation of different layers of a neural network.

Environment:

How to use:

  1. Put the directory of your data sequence, e.g. "YOUR_DATA" in ./data. There are several requirements on the format and organization of your data:

    • Each data frame is named as f_i.txt, where i is the time step/index of this data frame in the sequence.
    • The j th row of the data frame contains both the feature vector and label of the j th item, which is seperated by \tab. The label is at the last position.
    • All data frames must have the same number of rows, and the the same item is at the same row in different data frames to compute the node similarities one by one.
  2. Create a configuration file, e.g. "YOUR_DATA.json" in ./config, which is organized as a json structure.

{
  "algo": {
    "k_closest_count": 3,
    "perplexity": 70,
    "bfs_level": 1,
    "gamma": 0.1
  },
  "thesne": {
    "data_name": "YOUR_DATA",
    "pts_size": 2000,
    "norm": false,
    "data_ids": [1, 3, 6, 9],
    "data_dims": [100, 100, 100, 100, 100, 100, 100, 100, 100, 100],
    "data_titles": [
      "t=0",
      "t=1",
      "t=2",
      "t=3",
      "t=4",
      "t=5",
      "t=6",
      "t=7",
      "t=8",
      "t=9"
    ]
  }
}

In this file, algo represents the hyperparamters of our algorithm except for bfs_level, which always equals to 1. thesne contains the information of the input data. Please remember that data_name must be consistent with the directory name in the previous step.

  1. Create a shell script, e.g. "YOUR_DATA.sh" in ./scripts as below:
# !/bin/bash
# 1. specify the path of the configuration file
config_path="config/YOUR_DATA.json"

workdir=$(pwd)

# 2. build knn graph for each data frame
python3 codes/graphBuild/run.py $config_path

# 3. compute edge similarities between each two adjacent data frames
buildDir="codes/graphSim/build"
if [ ! -d $buildDir ]; then
    mkdir $buildDir
    echo "create directory ${buildDir}"
else
    echo "directory ${buildDir} already exists."
fi
cd $buildDir
qmake ../
make

cd $workdir

# bin is dependent on your operating system
bin=$buildDir/graphSim.app/Contents/MacOS/graphSim
$bin $config_path


# 4. run t-sne optimization
python3 codes/thesne/run.py $config_path

There are several places you should pay attention to.

  • Again, config_path must be consitent with the name of configuration file in the previous step

  • bin is dependent on your operating system. If you use linux, you probably should change it to

      bin=$buildDir/graphSim
    
  1. In root directory, type
sh scripts/YOUR_DATA.sh

The final embeddings will be generated in ./results/YOUR_DATA.

  1. Optionally, you can use codes/draw/run.py to plot the embeddings.

Example:

You can find an example in ./scripts/10_cluster_contract.sh.

Owner
IDEAS Lab
Our mission is to enhance people's ability to understand and communicate data through the design of automated visualization and visual analytics systems.
IDEAS Lab
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Video-based open-world segmentation

UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our

Yuming Du 84 Dec 22, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022