Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Overview

Big Vision

This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and TensorFlow Datasets for scalable input pipelines in the Cloud.

The open-sourcing of this codebase has two main purposes:

  1. Publishing the code of research projects developed in this codebase (see a list below).
  2. Providing a strong starting point for running large-scale vision experiments on Google Cloud TPUs, which should scale seamlessly and out-of-the box from a single TPU core to a distributed setup with up to 2048 TPU cores.

Note, that despite being TPU-centric, our codebase should in general support CPU, GPU and single-host multi-GPU training, thanks to JAX' well-executed and transparent support for multiple backends.

big_vision aims to support research projects at Google. We are unlikely to work on feature requests or accept external contributions, unless they were pre-approved (ask in an issue first). For a well-supported transfer-only codebase, see also vision_transformer.

The following research projects were originally conducted in the big_vision codebase:

Architecture research

Multimodal research

Knowledge distillation

Misc

  • Are we done with ImageNet?, by Lucas Beyer*, Olivier J. Hénaff*, Alexander Kolesnikov*, Xiaohua Zhai*, and Aäron van den Oord*

Codebase high-level organization and principles in a nutshell

The main entry point is a trainer module, which typically does all the boilerplate related to creating a model and an optimizer, loading the data, checkpointing and training/evaluating the model inside a loop. We provide the canonical trainer train.py in the root folder. Normally, individual projects within big_vision fork and customize this trainer.

All models, evaluators and preprocessing operations live in the corresponding subdirectories and can often be reused between different projects. We encourage compatible APIs within these directories to facilitate reusability, but it is not strictly enforced, as individual projects may need to introduce their custom APIs.

We have a powerful configuration system, with the configs living in the configs/ directory. Custom trainers and modules can seamlessly extend/modify the configuration options.

Training jobs are robust to interruptions and will resume seamlessly from the last saved checkpoint (assuming user provides the correct --workdir path).

Each configuration file contains a comment at the top with a COMMAND snippet to run it, and some hint of expected runtime and results. See below for more details, but generally speaking, running on a GPU machine involves calling python -m COMMAND while running on TPUs, including multi-host, involves

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=all
  --command "bash big_vision/run_tpu.sh COMMAND"

See instructions below for more details on how to use Google Cloud TPUs.

Current and future contents

The first release contains the core part of pre-training, transferring, and evaluating classification models at scale on Cloud TPU VMs.

Features and projects we plan to release in the near future, in no particular order:

  • ImageNet-21k in TFDS.
  • MLP-Mixer.
  • Loading misc public models used in our publications (NFNet, MoCov3, DINO).
  • Contrastive Image-Text model training and evaluation as in LiT and CLIP.
  • "Patient and consistent" distillation.
  • Memory-efficient Polyak-averaging implementation.
  • Advanced JAX compute and memory profiling. We are using internal tools for this, but may eventually add support for the publicly available ones.

We will continue releasing code of our future publications developed within big_vision here.

Non-content

The following exist in the internal variant of this codebase, and there is no plan for their release:

  • Regular regression tests for both quality and speed. They rely heavily on internal infrastructure.
  • Advanced logging, monitoring, and plotting of experiments. This also relies heavily on internal infrastructure. However, we are open to ideas on this and may add some in the future, especially if implemented in a self-contained manner.
  • Not yet published, ongoing research projects.

Running on Cloud TPU VMs

Create TPU VMs

To create a single machine with 8 TPU cores, follow the following Cloud TPU JAX document: https://cloud.google.com/tpu/docs/run-calculation-jax

To support large-scale vision research, more cores with multiple hosts are recommended. Below we provide instructions on how to do it.

First, create some useful variables, which we be reused:

export NAME="a name of the TPU deployment, e.g. my-tpu-machine"
export ZONE="GCP geographical zone, e.g. europe-west4-a"
export GS_BUCKET_NAME="Name of the storage bucket, e.g. my_bucket"

The following command line will create TPU VMs with 32 cores, 4 hosts.

gcloud alpha compute tpus tpu-vm create $NAME --zone $ZONE --accelerator-type v3-32 --version tpu-vm-tf-2.8.0

Install big_vision on TPU VMs

Fetch the big_vision repository, copy it to all TPU VM hosts, and install dependencies.

git clone --branch=master https://github.com/google-research/big_vision
gcloud alpha compute tpus tpu-vm scp --recurse big_vision/big_vision $NAME: --worker=all --zone=$ZONE
gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=all --command "bash big_vision/run_tpu.sh"

Download and prepare TFDS datasets

Everything in this section you need to do only once, and, alternatively, you can also do it on your local machine and copy the result to the cloud bucket. For convenience, we provide instructions on how to prepare data using Cloud TPUs.

Download and prepare TFDS datasets using a single worker. Seven TFDS datasets used during evaluations will be generated under ~/tensorflow_datasets/ (should take 10-15 minutes in total).

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=0 --command "bash big_vision/run_tpu.sh big_vision.tools.download_tfds_datasets cifar10 cifar100 oxford_iiit_pet oxford_flowers102 cars196 dtd uc_merced"

Copy the datasets to GS bucket, to make them accessible to all TPU workers.

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=0 --command "rm -r ~/tensorflow_datasets/downloads && gsutil cp -r ~/tensorflow_datasets gs://$GS_BUCKET_NAME"

If you want to integrate other public or custom datasets, i.e. imagenet2012, please follow the official guideline.

Pre-trained models

For the full list of pre-trained models check out the load function defined in the same module as the model code. And for example config on how to use these models, see configs/transfer.py.

Run the transfer script on TPU VMs

The following command line fine-tunes a pre-trained vit-i21k-augreg-b/32 model on cifar10 dataset.

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=all --command "TFDS_DATA_DIR=gs://$GS_BUCKET_NAME/tensorflow_datasets bash big_vision/run_tpu.sh big_vision.train --config big_vision/configs/transfer.py:model=vit-i21k-augreg-b/32,dataset=cifar10,crop=resmall_crop --workdir gs://$GS_BUCKET_NAME/big_vision/workdir/`date '+%m-%d_%H%M'` --config.lr=0.03"

Run the train script on TPU VMs

To train your own big_vision models on a large dataset, e.g. imagenet2012 (prepare the TFDS dataset), run the following command line.

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=all --command "TFDS_DATA_DIR=gs://$GS_BUCKET_NAME/tensorflow_datasets bash big_vision/run_tpu.sh big_vision.train --config big_vision/configs/bit_i1k.py  --workdir gs://$GS_BUCKET_NAME/big_vision/workdir/`date '+%m-%d_%H%M'`"

ViT baseline

We provide a well-tuned ViT-S/16 baseline in the config file named vit_s16_i1k.py. It achieves 76.5% accuracy on ImageNet validation split in 90 epochs of training, being a strong and simple starting point for research on the ViT models.

Please see our arXiv note for more details and if this baseline happens to by useful for your research, consider citing

@article{vit_baseline,
  url = {https://arxiv.org/abs/2205.01580},
  author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
  title = {Better plain ViT baselines for ImageNet-1k},
  journal={arXiv preprint arXiv:2205.01580},
  year = {2022},
}

Citing the codebase

If you found this codebase useful for your research, please consider using the following BibTEX to cite it:

@misc{big_vision,
  author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
  title = {Big Vision},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/google-research/big_vision}}
}

Disclaimer

This is not an official Google Product.

Owner
Google Research
Google Research
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023