This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

Related tags

Deep LearningL2ight
Overview

L2ight

By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Zixuan Jiang, Ray T. Chen and David Z. Pan.

This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

Introduction

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated photonic circuit states under challenging physical constraints, then performs photonic core mapping via combined analytical solving and zeroth-order optimization. A subspace learning procedure with multi-level sparsity is integrated into L2ight to enable in-situ gradient evaluation and fast adaptation, unleashing the power of optics for real on-chip intelligence. L2ight outperforms prior ONN training protocols with 3-order-of-magnitude higher scalability and over 30X better efficiency, when benchmarked on various models and learning tasks. This synergistic framework is the first scalable on-chip learning solution that pushes this emerging field from intractable to scalable and further to efficient for next-generation self-learnable photonic neural chips.

flow teaser

Dependencies

  • Python >= 3.6
  • pyutils >= 0.0.1. See pyutils for installation.
  • pytorch-onn >= 0.0.1. See pytorch-onn for installation.
  • Python libraries listed in requirements.txt
  • NVIDIA GPUs and CUDA >= 10.2

Structures

  • core/
    • models/
      • layers/
        • custom_conv2d and custom_linear layers
        • utils.py: sampler and profiler
      • sparse_bp_*.py: model definition
      • sparse_bp_base.py: base model definition; identity calibration and mapping codes.
    • optimizer/: mixedtrain and flops optimizers
    • builder.py: build training utilities
  • script/: contains experiment scripts
  • train_pretrain.py, train_map.py, train_learn.py, train_zo_learn.py: training logic
  • compare_gradient.py: compare approximated gradients with true gradients for ablation

Usage

  • Pretrain model.
    > python3 train_pretrain.py config/cifar10/vgg8/pretrain.yml

  • Identity calibration and parallel mapping. Please set your hyperparameters in CONFIG=config/cifar10/vgg8/pm/pm.yml and run
    > python3 train_map.py CONFIG --checkpoint.restore_checkpoint=path/to/your/pretrained/checkpoint

  • Subspace learning with multi-level sampling. Please set your hyperparameters in CONFIG=config/cifar10/vgg8/ds/learn.yml and run
    > python3 train_learn.py CONFIG --checkpoint.restore_chekcpoint=path/to/your/mapped/checkpoint --checkpoint.resume=1

  • All scripts for experiments are in ./script. For example, to run subspace learning with feedback sampling, column sampling, and data sampling, you can write proper task setting in SCRIPT=script/vgg8/train_ds_script.py and run
    > python3 SCRIPT

  • Comparison experiments with RAD [ICLR 2021] and SWAT-U [NeurIPS 2020]. Run with the SCRIPT=script/vgg8/train_rad_script.py and script/vgg8/train_swat_script.py,
    > python3 SCRIPT

  • Comparison with FLOPS [DAC 2020] and MixedTrn [AAAI 2021]. Run with the METHOD=mixedtrain or flops,
    > python3 train_zo_learn.py config/mnist/cnn3/METHOD/learn.yml

Citing L2ight

@inproceedings{gu2021L2ight,
  title={L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization},
  author={Jiaqi Gu and Hanqing Zhu and Chenghao Feng and Zixuan Jiang and Ray T. Chen and David Z. Pan},
  journal={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2021}
}
Owner
Jiaqi Gu
PhD Student at UT Austin
Jiaqi Gu
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022