Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Overview

Real-time RGBD-based Extended Body Pose Estimation

This repository is a real-time demo for our paper that was published at WACV 2021 conference

The output of our module is in SMPL-X parametric body mesh model:

Combined system runs at 30 fps on a 2080ti GPU and 8 core @ 4GHz CPU.

Alt Text

How to use

Build

  • Prereqs: your nvidia driver should support cuda 10.2, Windows or Mac are not supported.
  • Clone repo:
    • git clone https://github.com/rmbashirov/rgbd-kinect-pose.git
    • cd rgbd-kinect-pose
    • git submodule update --force --init --remote
  • Docker setup:
  • Build docker image: run 2 cmds
  • Attach your Azure Kinect camera
  • Check your Azure Kinect camera is working inside Docker container:
    • Enter Docker container: ./run_local.sh from docker dir
    • Then run python -m pyk4a.viewer --vis_color --no_bt --no_depth inside docker container

Download data

  • Download our data archive smplx_kinect_demo_data.tar.gz
  • Unzip: mkdir /your/unpacked/dir, tar -zxf smplx_kinect_demo_data.tar.gz -C /your/unpacked/dir
  • Download models for hand, see link in "Download models from here" line in our fork, put to /your/unpacked/dir/minimal_hand/model
  • To download SMPL-X parametric body model go to this project website, register, go to the downloads section, download SMPL-X v1.1 model, put to /your/unpacked/dir/pykinect/body_models/smplx
  • /your/unpacked/dir should look like this
  • Set data_dirpath and output_dirpath variables in config file:
    • data_dirpath is a path to /your/unpacked/dir
    • output_dirpath is used to check timings or to store result images
    • ensure these paths are visible inside docker container, set VOLUMES variable here

Run

  • Run demo: in src dir run ./run_server.sh, the latter will enter docker container and will use config file where shape of the person is loaded from an external file: in our work we did not focus on person's shape estimation

What else

Apart from our main body pose estimation contribution you can find this repository useful for:

  • minimal_pytorch_rasterizer python package: CUDA non-differentiable mesh rasterization library for pytorch tensors with python bindings
  • pyk4a python package: real-time streaming from Azure Kinect camera, this package also works in our provided docker environment
  • multiprocessing_pipeline python package: set-up pipeline graph of python blocks running in parallel, see usage in server.py

Citation

If you find the project helpful, please consider citing us:

@inproceedings{bashirov2021real,
  title={Real-Time RGBD-Based Extended Body Pose Estimation},
  author={Bashirov, Renat and Ianina, Anastasia and Iskakov, Karim and Kononenko, Yevgeniy and Strizhkova, Valeriya and Lempitsky, Victor and Vakhitov, Alexander},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={2807--2816},
  year={2021}
}

Non-commercial use only

Owner
Renat Bashirov
CV research engineer
Renat Bashirov
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023