Unified file system operation experience for different backend

Overview

megfile - Megvii FILE library

build docs Latest version Support python versions License

megfile provides a silky operation experience with different backends (currently including local file system and OSS), which enable you to focus more on the logic of your own project instead of the question of "Which backend is used for this file?"

megfile provides:

  • Almost unified file system operation experience. Target path can be easily moved from local file system to OSS.
  • Complete boundary case handling. Even the most difficult (or even you can't even think of) boundary conditions, megfile can help you easily handle it.
  • Perfect type hints and built-in documentation. You can enjoy the IDE's auto-completion and static checking.
  • Semantic version and upgrade guide, which allows you enjoy the latest features easily.

megfile's advantages are:

  • smart_open can open resources that use various protocols, including fs, s3, http(s) and stdio. Especially, reader / writer of s3 in megfile is implemented with multi-thread, which is faster than known competitors.
  • smart_glob is available on s3. And it supports zsh extended pattern syntax of [], e.g. s3://bucket/video.{mp4,avi}.
  • All-inclusive functions like smart_exists / smart_stat / smart_sync. If you don't find the functions you want, submit an issue.
  • Compatible with pathlib.Path interface, referring to S3Path and SmartPath.

Quick Start

Here's an example of writing a file to OSS, syncing to local, reading and finally deleting it.

from megfile import smart_open, smart_exists, smart_sync, smart_remove, smart_glob
from megfile.smart_path import SmartPath

# open a file in s3 bucket
with smart_open('s3://playground/refile-test', 'w') as fp:
    fp.write('refile is not silver bullet')

# test if file in s3 bucket exist
smart_exists('s3://playground/refile-test')

# copy files or directories
smart_sync('s3://playground/refile-test', '/tmp/playground')

# remove files or directories
smart_remove('s3://playground/refile-test')

# glob files or directories in s3 bucket
smart_glob('s3://playground/video-?.{mp4,avi}')

# or in local file system
smart_exists('/tmp/playground/refile-test')

# smart_open also support protocols like http / https
smart_open('https://www.google.com')

# SmartPath interface
path = SmartPath('s3://playground/megfile-test')
if path.exists():
    with path.open() as f:
        result = f.read(7)
        assert result == b'megfile'

Installation

PyPI

pip3 install megfile

You can specify megfile version as well

pip3 install "megfile~=0.0"

Build from Source

megfile can be installed from source

git clone [email protected]:megvii-research/megfile.git
cd megfile
pip3 install -U .

Development Environment

git clone [email protected]:megvii-research/megfile.git
cd megfile
sudo apt install libgl1-mesa-glx libfuse-dev fuse
pip3 install -r requirements.txt -r requirements-dev.txt

How to Contribute

  • We welcome everyone to contribute code to the megfile project, but the contributed code needs to meet the following conditions as much as possible:

    You can submit code even if the code doesn't meet conditions. The project members will evaluate and assist you in making code changes

    • Code format: Your code needs to pass code format check. megfile uses yapf as lint tool and the version is locked at 0.27.0. The version lock may be removed in the future

    • Static check: Your code needs complete type hint. megfile uses pytype as static check tool. If pytype failed in static check, use # pytype: disable=XXX to disable the error and please tell us why you disable it.

      Note : Because pytype doesn't support variable type annation, the variable type hint format introduced by py36 cannot be used.

      i.e. variable: int is invalid, replace it with variable # type: int

    • Test: Your code needs complete unit test coverage. megfile uses pyfakefs and moto as local file system and OSS virtual environment in unit tests. The newly added code should have a complete unit test to ensure the correctness

  • You can help to improve megfile in many ways:

    • Write code.
    • Improve documentation.
    • Report or investigate bugs and issues.
    • If you find any problem or have any improving suggestion, submit a new issuse as well. We will reply as soon as possible and evaluate whether to adopt.
    • Review pull requests.
    • Star megfile repo.
    • Recommend megfile to your friends.
    • Any other form of contribution is welcomed.
Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022