BBScan py3 - BBScan py3 With Python

Overview

BBScan_py3

This repository is forked from lijiejie/BBScan 1.5. I migrated the former python code to python3. The following description is the origin author's readme.

BBScan 是一个高并发漏洞扫描工具,可用于

  • 高危漏洞爆发后,编写简单插件或规则,进行全网扫描
  • 作为巡检组件,集成到已有漏洞扫描系统中

BBScan能够在1分钟内

  • 对超过2万个IP地址进行指定端口发现,同时,进行漏洞验证。例如,Samba MS17010漏洞
  • 对超过1000个网站进行HTTP服务发现(80/443),同时,请求某个指定URL,完成漏洞检测

BBScan is a super fast vulnerability scanner.

  • A class B network (65534 hosts) could be scanned within 4 minutes (ex. Detect Samba MS17010)
  • Up to find more than 1000 target's web services and meanwhile, detect the vulnerability associated with a specified URL within one minute

Install

pip3 install -r requirements.txt

开始使用

  • 使用1个或多个插件,扫描某个B段
python BBScan.py --scripts-only --script redis_unauthorized_access --host www.site.com --network 16

上述命令将使用 redis_unauthorized_access 插件,扫描 www.site.com/16,扫描过程将持续 2~4 分钟。

  • 使用1个或多个规则,扫描文件中的所有目标
python BBScan.py --no-scripts --rule git_and_svn --no-check404 --no-crawl -f iqiyi.txt

使用 git_and_svn 文件中的规则,扫描 iqiyi.txt 文件中的所有目标,每一行一个目标

--no-check404 指定不检查404状态码

--no-crawl 指定不抓取子目录

通过指定上述两个参数,可显著减少HTTP请求的数量。

参数说明

如何设定扫描目标

  --host [HOST [HOST ...]]
                        该参数可指定1个或多个域名/IP
  -f TargetFile         从文件中导入所有目标,目标以换行符分隔
  -d TargetDirectory    从文件夹导入所有.txt文件,文件中是换行符分隔的目标
  --network MASK        设置一个子网掩码(8 ~ 31),配合上面3个参数中任意一个。将扫描
  						Target/MASK 网络下面的所有IP

HTTP扫描

  --rule [RuleFileName [RuleFileName ...]]
                        扫描指定的1个或多个规则
  -n, --no-crawl        禁用页面抓取,不处理页面中的其他链接
  -nn, --no-check404    禁用404状态码检查
  --full                处理所有子目录。 /x/y/z/这样的链接,/x/ /x/y/也将被扫描

插件扫描

  --scripts-only        只启用插件扫描,禁用HTTP规则扫描
  --script [ScriptName [ScriptName ...]]
                        扫描指定1个或多个插件
  --no-scripts          禁用插件扫描

并发

  -p PROCESS            扫描进程数,默认30。建议设置 10 ~ 50之间
  -t THREADS            单个目标的扫描线程数, 默认3。建议设置 3 ~ 10之间

其他参数

  --timeout TIMEOUT     单个目标最大扫描时间(单位:分钟),默认10分钟
  -md                   输出markdown格式报告
  --save-ports PortsDataFile
                        将端口开放信息保存到文件 PortsDataFile,可以导入再次使用
  --debug               打印调试信息
  -nnn, --no-browser    不使用默认浏览器打开扫描报告
  -v                    show program's version number and exit

使用技巧

  • 如何把BBScan当做一个快速的端口扫描工具使用?

找到scripts/tools/port_scan.py,填入需要扫描的端口号列表。把文件移动到scripts下。执行

python BBScan.py --scripts-only --script port_scan --host www.baidu.com --network 16 --save-ports ports_80.txt

--save-ports 是一个非常有用的参数,可以将每次任务执行过程发现的端口,保存到文件中

  • 如何观察执行过程

请设置 --debug 参数,观察是否按照预期,执行插件,发起HTTP请求

  • 如何编写插件

请参考scripts文件夹下的插件内容。self参数是一个Scanner对象,可使用Scanner对象的任意方法、属性。

self.host self.port 是目标主机和端口

self.ports_open 是开放的端口列表,是所有插件共享的。 一般不在插件执行过程中再单独扫描端口

self.conn_pool 是HTTP连接池

self.http_request 可发起HTTP GET请求

self.index_headers self.index_status self.index_html_doc 是请求首页后返回的,一旦扫描器发现有插件依赖,会预先请求首页,保存下来,被所有插件公用

Owner
baiyunfei
我是一个执着的人,坚持做着自己热爱的事情!
baiyunfei
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022