BBScan py3 - BBScan py3 With Python

Overview

BBScan_py3

This repository is forked from lijiejie/BBScan 1.5. I migrated the former python code to python3. The following description is the origin author's readme.

BBScan 是一个高并发漏洞扫描工具,可用于

  • 高危漏洞爆发后,编写简单插件或规则,进行全网扫描
  • 作为巡检组件,集成到已有漏洞扫描系统中

BBScan能够在1分钟内

  • 对超过2万个IP地址进行指定端口发现,同时,进行漏洞验证。例如,Samba MS17010漏洞
  • 对超过1000个网站进行HTTP服务发现(80/443),同时,请求某个指定URL,完成漏洞检测

BBScan is a super fast vulnerability scanner.

  • A class B network (65534 hosts) could be scanned within 4 minutes (ex. Detect Samba MS17010)
  • Up to find more than 1000 target's web services and meanwhile, detect the vulnerability associated with a specified URL within one minute

Install

pip3 install -r requirements.txt

开始使用

  • 使用1个或多个插件,扫描某个B段
python BBScan.py --scripts-only --script redis_unauthorized_access --host www.site.com --network 16

上述命令将使用 redis_unauthorized_access 插件,扫描 www.site.com/16,扫描过程将持续 2~4 分钟。

  • 使用1个或多个规则,扫描文件中的所有目标
python BBScan.py --no-scripts --rule git_and_svn --no-check404 --no-crawl -f iqiyi.txt

使用 git_and_svn 文件中的规则,扫描 iqiyi.txt 文件中的所有目标,每一行一个目标

--no-check404 指定不检查404状态码

--no-crawl 指定不抓取子目录

通过指定上述两个参数,可显著减少HTTP请求的数量。

参数说明

如何设定扫描目标

  --host [HOST [HOST ...]]
                        该参数可指定1个或多个域名/IP
  -f TargetFile         从文件中导入所有目标,目标以换行符分隔
  -d TargetDirectory    从文件夹导入所有.txt文件,文件中是换行符分隔的目标
  --network MASK        设置一个子网掩码(8 ~ 31),配合上面3个参数中任意一个。将扫描
  						Target/MASK 网络下面的所有IP

HTTP扫描

  --rule [RuleFileName [RuleFileName ...]]
                        扫描指定的1个或多个规则
  -n, --no-crawl        禁用页面抓取,不处理页面中的其他链接
  -nn, --no-check404    禁用404状态码检查
  --full                处理所有子目录。 /x/y/z/这样的链接,/x/ /x/y/也将被扫描

插件扫描

  --scripts-only        只启用插件扫描,禁用HTTP规则扫描
  --script [ScriptName [ScriptName ...]]
                        扫描指定1个或多个插件
  --no-scripts          禁用插件扫描

并发

  -p PROCESS            扫描进程数,默认30。建议设置 10 ~ 50之间
  -t THREADS            单个目标的扫描线程数, 默认3。建议设置 3 ~ 10之间

其他参数

  --timeout TIMEOUT     单个目标最大扫描时间(单位:分钟),默认10分钟
  -md                   输出markdown格式报告
  --save-ports PortsDataFile
                        将端口开放信息保存到文件 PortsDataFile,可以导入再次使用
  --debug               打印调试信息
  -nnn, --no-browser    不使用默认浏览器打开扫描报告
  -v                    show program's version number and exit

使用技巧

  • 如何把BBScan当做一个快速的端口扫描工具使用?

找到scripts/tools/port_scan.py,填入需要扫描的端口号列表。把文件移动到scripts下。执行

python BBScan.py --scripts-only --script port_scan --host www.baidu.com --network 16 --save-ports ports_80.txt

--save-ports 是一个非常有用的参数,可以将每次任务执行过程发现的端口,保存到文件中

  • 如何观察执行过程

请设置 --debug 参数,观察是否按照预期,执行插件,发起HTTP请求

  • 如何编写插件

请参考scripts文件夹下的插件内容。self参数是一个Scanner对象,可使用Scanner对象的任意方法、属性。

self.host self.port 是目标主机和端口

self.ports_open 是开放的端口列表,是所有插件共享的。 一般不在插件执行过程中再单独扫描端口

self.conn_pool 是HTTP连接池

self.http_request 可发起HTTP GET请求

self.index_headers self.index_status self.index_html_doc 是请求首页后返回的,一旦扫描器发现有插件依赖,会预先请求首页,保存下来,被所有插件公用

Owner
baiyunfei
我是一个执着的人,坚持做着自己热爱的事情!
baiyunfei
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022