FluxTraining.jl gives you an endlessly extensible training loop for deep learning

Overview

FluxTraining.jl

Docs (master)

A powerful, extensible neural net training library.

FluxTraining.jl gives you an endlessly extensible training loop for deep learning inspired by fastai's training loop. It is the training backend for FastAI.jl.

It exposes a small set of extensible interfaces and uses them to implement

  • hyperparameter scheduling
  • metrics
  • logging
  • training history; and
  • model checkpointing

Install using ]add FluxTraining.

Read getting started first and the user guide if you want to know more.

Comments
  • TagBot trigger issue

    TagBot trigger issue

    This issue is used to trigger TagBot; feel free to unsubscribe.

    If you haven't already, you should update your TagBot.yml to include issue comment triggers. Please see this post on Discourse for instructions and more details.

    opened by JuliaTagBot 15
  • Use SnoopPrecompile.jl

    Use SnoopPrecompile.jl

    This adds a basic precompile statement using SnoopPrecompile.jl.

    This reduces the Time-to-first-fit! by

    Measurements:

    • using FluxTraining: 21s (this PR), 19s (master) -> 2s slower
    • fit!(testlearner(), 1): 14.5s (this PR), 30s (master) -> 15s faster
    • both: 35.5s (this PR), 49s (master) -> 13.5s/40% faster

    This seems like a clear win for me, except for the longer precompilation time which will only occur once for regular package usage. Has anyone tried using SnoopPrecompile.jl for other packages in the FluxML org?

    opened by lorenzoh 8
  • `Scheduler` causes cycle in execution DAG?

    `Scheduler` causes cycle in execution DAG?

    I have the following script:

    lossfn = Flux.Losses.logitcrossentropy
    
    # define schedule and optimizer
    initial_lr = 0.1
    schedule = Step(initial_lr, 0.5, 20)
    optim = Flux.Optimiser(Momentum(initial_lr), WeightDecay(1e-3))
    
    # callbacks
    logger = TensorBoardBackend("tblogs")
    schcb = Scheduler(LearningRate => schedule)
    hlogcb = LogHyperParams(logger)
    mlogcb = LogMetrics(logger)
    valcb = Metrics(Metric(accuracy; phase = TrainingPhase, name = "train_acc"),
                    Metric(accuracy; phase = ValidationPhase, name = "val_acc"))
    
    # setup learner object
    learner = Learner(m, lossfn;
                      data = (trainloader, valloader),
                      optimizer = optim,
                      callbacks = [ToGPU(), mlogcb, valcb])
    

    Any time I add schcb to the list of callbacks passed to the Learner, I get an error from FluxTraining that there is a cycle in the DAG. This did not happen in previous versions of FluxTraining (though I haven't been able to bisect the change yet).

    opened by darsnack 4
  • Use Optimisers.jl

    Use Optimisers.jl

    With Flux.jl 0.13 moving to use the explicit optimisers in Optimisers.jl, I think FluxTraining.jl should also use those as a default.

    This would also allow easier integration with alternative ADs like, PyCallChainRules.jl, see https://github.com/rejuvyesh/PyCallChainRules.jl/issues/19.

    @ToucheSir can this be done in a backward-compatible way, i.e. supporting Flux v0.12 and below or does Optimisers.jl depend on Flux v0.13?

    opened by lorenzoh 4
  • Break out Schedule

    Break out Schedule

    Does it make sense to break out Schedule from FluxTraining.jl? It seems like you hit upon a cool Julia package to use for scheduling, and we could use it as the base for implementing several common LR schedules. Would be nice to be able to write something like Cyclic(period = n) etc.

    I can give this a shot in a repo if you think it makes sense.

    opened by darsnack 4
  • Record time trained, training loss, validation loss and performance

    Record time trained, training loss, validation loss and performance

    For my application, I would love to be able to record the time trained, training loss, validation loss and classification performance at a given time-interval in the training loop. But currently, the History seems only able to store number of epochs, steps, and steps in current epoch.

    Would there be a way to make the History for extendable, so that users can record anything they want?

    A final detail would be that I want to record these stats only after a factor increase in training time, so that when I plot e.g. training loss again a logarithmic time scale, I get somewhat evenly distributed numbers. I am not sure how to make that happen, and I do not expect it to be built in functionality. I am just mentioning it in case it would be simple enough to implement.

    opened by KronosTheLate 3
  • Add SanityCheck callback

    Add SanityCheck callback

    Adds a SanityCheck callback as discussed on Zulip.

    If some checks don't pass the output will look like this:

    1/4 sanity checks failed:
    ---
    1: Model and loss function compatible with data (ERROR)
    
    To perform the optimization step, model and loss function need
    to be compatible with the data. This means the following must work:
    
    - `(x, y), _ = iterate(learner.data.training)`
    - `ŷ = learner.model(x)`
    - `loss = learner.lossfunction(learner.model(x), y)
    
    opened by lorenzoh 3
  • How not to have printing callbacks?

    How not to have printing callbacks?

    Is there a way of constructing a Learner without certain callbacks?

    julia> Learner(predict, lossfn; callbacks = [Metrics(accuracy)]).callbacks
    FluxTraining.Callbacks(FluxTraining.SafeCallback[Metrics(Loss(), Metric(Accuracy)), ProgressPrinter(), MetricsPrinter(), StopOnNaNLoss(), Recorder()], FluxTraining.LinearRunner(), {5, 5} directed simple Int64 graph, false)
    
    julia> Learner(predict, lossfn).callbacks
    FluxTraining.Callbacks(FluxTraining.SafeCallback[ProgressPrinter(), MetricsPrinter(), StopOnNaNLoss(), Recorder(), Metrics(Loss())], FluxTraining.LinearRunner(), {5, 5} directed simple Int64 graph, false)
    

    Or at least, to remove callbacks after construction? image

    opened by KronosTheLate 2
  • docs oddities

    docs oddities

    At the very top of this doc page https://fluxml.ai/FluxTraining.jl/dev/i/?id=documents%2Fdocs%2Fcallbacks%2Fusage.md

    using FluxTraining
    using FluxTraining: Callback, Read, Write, stateaccess
    model, data, lossfn = nothing, (), nothing, nothing
    

    Is that intended?

    Also, if from that page I follow a couple of links and land to https://fluxml.ai/FluxTraining.jl/dev/i/?id=documents%2FREADME.md&id=documents%2Fdocs%2Fcallbacks%2Fcustom.md&id=documents%2Fdocs%2Ftutorials%2Ftraining.md but then i don't see any buttons for closing all those panes or for going back. Even the browser back button doesn't have any effect.

    One last thing is that I don't see a link when visualizing the docstring of types/methods to jump to the source code.

    opened by CarloLucibello 2
  • (Documentation) Document `Learner` components

    (Documentation) Document `Learner` components

    This adds better documentation for the components of a Learner, i.e. model, data iterator, optimizer and loss function.

    Also makes the README clearer and fixes some broken links.

    opened by lorenzoh 2
  • Error displaying EarlyStopper

    Error displaying EarlyStopper

    Show method for EarlyStopping throws an error:

    julia> using FluxTraining
    
    julia> FluxTraining.EarlyStopping(1)
    Error showing value of type EarlyStopping:
    ERROR: type EarlyStopping has no field stopper
    Stacktrace:
      [1] getproperty(x::EarlyStopping, f::Symbol)
        @ Base ./Base.jl:33
      [2] show(io::IOContext{Base.TTY}, cb::EarlyStopping)
        @ FluxTraining ~/.julia/packages/FluxTraining/LfCE3/src/callbacks/earlystopping.jl:56
      [3] show(io::IOContext{Base.TTY}, #unused#::MIME{Symbol("text/plain")}, x::EarlyStopping)
        @ Base.Multimedia ./multimedia.jl:47
      [4] (::REPL.var"#38#39"{REPL.REPLDisplay{REPL.LineEditREPL}, MIME{Symbol("text/plain")}, Base.RefValue{Any}})(io::Any)
        @ REPL /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/REPL/src/REPL.jl:220
      [5] with_repl_linfo(f::Any, repl::REPL.LineEditREPL)
        @ REPL /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/REPL/src/REPL.jl:462
      [6] display(d::REPL.REPLDisplay, mime::MIME{Symbol("text/plain")}, x::Any)
        @ REPL /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/REPL/src/REPL.jl:213
      [7] display(d::REPL.REPLDisplay, x::Any)
        @ REPL /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/REPL/src/REPL.jl:225
      [8] display(x::Any)
        @ Base.Multimedia ./multimedia.jl:328
      [9] (::Media.var"#15#16"{EarlyStopping})()
        @ Media ~/.julia/packages/Media/ItEPc/src/compat.jl:28
     [10] hookless(f::Media.var"#15#16"{EarlyStopping})
        @ Media ~/.julia/packages/Media/ItEPc/src/compat.jl:14
     [11] render(#unused#::Media.NoDisplay, x::EarlyStopping)
        @ Media ~/.julia/packages/Media/ItEPc/src/compat.jl:27
     [12] render(x::EarlyStopping)
        @ Media ~/.julia/packages/Media/ItEPc/src/system.jl:160
     [13] display(#unused#::Media.DisplayHook, x::EarlyStopping)
        @ Media ~/.julia/packages/Media/ItEPc/src/compat.jl:9
     [14] display(x::Any)
        @ Base.Multimedia ./multimedia.jl:328
     [15] #invokelatest#2
        @ ./essentials.jl:708 [inlined]
     [16] invokelatest
        @ ./essentials.jl:706 [inlined]
     [17] print_response(errio::IO, response::Any, show_value::Bool, have_color::Bool, specialdisplay::Union{Nothing, AbstractDisplay})
        @ REPL /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/REPL/src/REPL.jl:247
     [18] (::REPL.var"#40#41"{REPL.LineEditREPL, Pair{Any, Bool}, Bool, Bool})(io::Any)
        @ REPL /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/REPL/src/REPL.jl:231
     [19] with_repl_linfo(f::Any, repl::REPL.LineEditREPL)
        @ REPL /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/REPL/src/REPL.jl:462
     [20] print_response(repl::REPL.AbstractREPL, response::Any, show_value::Bool, have_color::Bool)
        @ REPL /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/REPL/src/REPL.jl:229
     [21] (::REPL.var"#do_respond#61"{Bool, Bool, REPL.var"#72#82"{REPL.LineEditREPL, REPL.REPLHistoryProvider}, REPL.LineEditREPL, REPL.LineEdit.Prompt})(s::REPL.LineEdit.MIState, buf::Any, ok::Bool)
        @ REPL /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/REPL/src/REPL.jl:798
     [22] #invokelatest#2
        @ ./essentials.jl:708 [inlined]
     [23] invokelatest
        @ ./essentials.jl:706 [inlined]
     [24] run_interface(terminal::REPL.Terminals.TextTerminal, m::REPL.LineEdit.ModalInterface, s::REPL.LineEdit.MIState)
        @ REPL.LineEdit /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/REPL/src/LineEdit.jl:2441
     [25] run_frontend(repl::REPL.LineEditREPL, backend::REPL.REPLBackendRef)
        @ REPL /Users/julia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.6/REPL/src/REPL.jl:1126
     [26] (::REPL.var"#44#49"{REPL.LineEditREPL, REPL.REPLBackendRef})()
        @ REPL ./task.jl:411
    
    

    Thanks for the awesome package! Should I open a PR to fix this?

    opened by awadell1 2
  • Question regarding ProgressPrinter

    Question regarding ProgressPrinter

    Hi first off: wonderful package :)

    I have some issues with the ProgressPrinter not showing up even when using the defaultcallbacks.

    learner = Learner(model, loss; optimizer=opt, callbacks=[ToGPU()], usedefaultcallbacks=true)
    FluxTraining.fit!(learner, epochs, (dl, val_dl)) # where dl, dl_val are both Flux.DataLoader objects
    

    Do I need to do something specific when constructing the Learner which I have missed? From the code it seems like I would need to give it a Progress object, do I have to construct that myself? What requirements does my data-iterator have to fullfill to show up with the defaultcallbacks?

    opened by hv10 5
  • CompatHelper: bump compat for PrettyTables to 2, (keep existing compat)

    CompatHelper: bump compat for PrettyTables to 2, (keep existing compat)

    This pull request changes the compat entry for the PrettyTables package from 1, 1.1, 1.2 to 1, 1.1, 1.2, 2. This keeps the compat entries for earlier versions.

    Note: I have not tested your package with this new compat entry. It is your responsibility to make sure that your package tests pass before you merge this pull request.

    opened by github-actions[bot] 0
  • `accuracy` doesn't work with `DataLoader`

    `accuracy` doesn't work with `DataLoader`

    since there's an example of using accuracy in Metric, it probably:

    1. should be documented
    2. should be made working with either learner or (model, dataloader)
    opened by Moelf 0
  • Improve printing during training

    Improve printing during training

    With the single metric accuracy, the output-tables (which I love) look like this:

    Epoch 11 TrainingPhase(): 100%|███████████████████████████████████████████| Time: 0:00:00
    ┌───────────────┬───────┬─────────┬──────────┐
    │         Phase │ Epoch │    Loss │ Accuracy │
    ├───────────────┼───────┼─────────┼──────────┤
    │ TrainingPhase │  11.0 │ 0.25969 │  0.92827 │
    └───────────────┴───────┴─────────┴──────────┘
    ┌─────────────────┬───────┬─────────┬──────────┐
    │           Phase │ Epoch │    Loss │ Accuracy │
    ├─────────────────┼───────┼─────────┼──────────┤
    │ ValidationPhase │  11.0 │ 0.26323 │  0.92731 │
    └─────────────────┴───────┴─────────┴──────────┘
    

    I suggest putting them into the same table, and making the Epoch vector of element type Int64, to make it look like this:

    Epoch 11 TrainingPhase(): 100%|███████████████████████████████████████████| Time: 0:00:00
    ┌────────--───────┬───────┬─────────┬──────────┐
    │         Phase   │ Epoch │    Loss │ Accuracy │
    ├──────────--─────┼───────┼─────────┼──────────┤
    │ TrainingPhase   │  11   │ 0.25969 │  0.92827 │
    │ ValidationPhase │  11   │ 0.26323 │  0.92731 │
    └─────────────────┴───────┴─────────┴──────────┘
    
    opened by KronosTheLate 1
  • Quickstart tutorial broken

    Quickstart tutorial broken

    The example Training an image classifier currently uses the following code:

    xs, ys = (
        # convert each image into h*w*1 array of floats 
        [Float32.(reshape(img, 28, 28, 1)) for img in Flux.Data.MNIST.images()],
        # one-hot encode the labels
        [Float32.(Flux.onehot(y, 0:9)) for y in Flux.Data.MNIST.labels()],
    )
    

    However,

    (Project) pkg> st Flux
          Status `C:\Users\Dennis Bal\ProjectFolder\Project.toml`
      [587475ba] Flux v0.13.0
    
    julia> using Flux
    
    julia> Flux.Data.MNIST
    ERROR: UndefVarError: MNIST not defined
    Stacktrace:
     [1] getproperty(x::Module, f::Symbol)
       @ Base .\Base.jl:35
     [2] top-level scope
       @ REPL[16]:1
    
    

    So the example is broken. As a side note, I think the example would do great by using MLUtils instead of DataLoaders.jl and MLDataPattern. Also, Flux imports DataLoader so no need to explicitly import it.

    But I take a look at the docs and try to get started. So I make the following code, that works with Flux's base capacities:

    julia> using Flux
    
    julia> using Flux: onehotbatch, onecold
    
    julia> using FluxTraining
    
    julia> using MLUtils: flatten, unsqueeze
    
    julia> using MLDatasets
    
    julia> labels = 0:9
    0:9
    
    julia> traindata = MNIST.traindata(Float32) |> x->(unsqueeze(x[1], 3), onehotbatch(x[2], labels));
    
    julia> size.(traindata)
    ((28, 28, 1, 60000), (10, 60000))
    
    julia> trainloader = DataLoader(traindata, batchsize=128);
    
    julia> validdata = MNIST.testdata(Float32) |> x->(unsqueeze(x[1], 3), onehotbatch(x[2], labels)); 
    
    julia> size.(validdata)
    ((28, 28, 1, 10000), (10, 10000))
    
    julia> validloader = DataLoader(validdata, batchsize=128);
    
    julia> predict = Chain(flatten, Dense(28^2, 10))
    Chain(
      MLUtils.flatten,
      Dense(784 => 10),                     # 7_850 parameters
    )
    
    julia> lossfunc(x, y) = Flux.Losses.logitbinarycrossentropy(predict(x), y)
    lossfunc (generic function with 1 method)
    
    julia> optimizer=ADAM()
    ADAM(0.001, (0.9, 0.999), 1.0e-8, IdDict{Any, Any}())
    
    julia> callbacks = [Metrics(accuracy)]
    1-element Vector{Metrics}:
     Metrics(Loss(), Metric(Accuracy))
    
    julia> learner = Learner(predict, lossfunc; optimizer, callbacks)
    Learner()
    
    

    At this point, I start checking loss and training with Flux's train!:

    julia> lossfunc(validdata...)
    0.7624986f0
    
    julia> Flux.train!(lossfunc, Flux.params(predict), trainloader, optimizer)
    
    julia> lossfunc(validdata...)
    0.11266354f0
    
    julia> Flux.train!(lossfunc, Flux.params(predict), trainloader, optimizer)
    
    julia> lossfunc(validdata...)
    0.08880948f0
    
    julia> Flux.train!(lossfunc, Flux.params(predict), trainloader, optimizer)
    
    julia> lossfunc(validdata...)
    0.0801171f0
    

    Training no problem. However, when I try to train my learner, it seems like a single float is passed to predict, and not an array:

    julia> fit!(learner, 1, (traindata, validdata))
    Epoch 1 TrainingPhase() ...
    ERROR: MethodError: no method matching flatten(::Float32)
    Closest candidates are:
      flatten(::AbstractArray) at C:\Users\usrname\.julia\packages\MLUtils\QTRw7\src\utils.jl:424  
    Stacktrace:
      [1] macro expansion
        @ C:\Users\usrname\.julia\packages\Zygote\Y6SC4\src\compiler\interface2.jl:0 [inlined]     
      [2] _pullback(ctx::Zygote.Context, f::typeof(flatten), args::Float32)
        @ Zygote C:\Users\usrname\.julia\packages\Zygote\Y6SC4\src\compiler\interface2.jl:9        
      [3] macro expansion
        @ C:\Users\usrname\.julia\packages\Flux\18YZE\src\layers\basic.jl:53 [inlined]
      [4] _pullback
        @ C:\Users\usrname\.julia\packages\Flux\18YZE\src\layers\basic.jl:53 [inlined]
      [5] _pullback(::Zygote.Context, ::typeof(Flux.applychain), ::Tuple{typeof(flatten), Dense{typeof(identity), Matrix{Float32}, Vector{Float32}}}, ::Float32)
        @ Zygote C:\Users\usrname\.julia\packages\Zygote\Y6SC4\src\compiler\interface2.jl:0        
      [6] _pullback
        @ C:\Users\usrname\.julia\packages\Flux\18YZE\src\layers\basic.jl:51 [inlined]
      [7] _pullback(ctx::Zygote.Context, f::Chain{Tuple{typeof(flatten), Dense{typeof(identity), Matrix{Float32}, Vector{Float32}}}}, args::Float32)
        @ Zygote C:\Users\usrname\.julia\packages\Zygote\Y6SC4\src\compiler\interface2.jl:0        
      [8] _pullback
        @ C:\Users\usrname\.julia\packages\FluxTraining\iBFSd\src\training.jl:54 [inlined]
      [9] _pullback(ctx::Zygote.Context, f::FluxTraining.var"#70#72"{FluxTraining.var"#handlefn#78"{Learner, TrainingPhase}, FluxTraining.PropDict{Any}, Learner}, args::Chain{Tuple{typeof(flatten), Dense{typeof(identity), Matrix{Float32}, Vector{Float32}}}})
        @ Zygote C:\Users\usrname\.julia\packages\Zygote\Y6SC4\src\compiler\interface2.jl:0        
     [10] _pullback
        @ C:\Users\usrname\.julia\packages\FluxTraining\iBFSd\src\training.jl:70 [inlined]
     [11] _pullback(::Zygote.Context, ::FluxTraining.var"#73#74"{FluxTraining.var"#70#72"{FluxTraining.var"#handlefn#78"{Learner, TrainingPhase}, FluxTraining.PropDict{Any}, Learner}, Chain{Tuple{typeof(flatten), Dense{typeof(identity), Matrix{Float32}, Vector{Float32}}}}})
        @ Zygote C:\Users\usrname\.julia\packages\Zygote\Y6SC4\src\compiler\interface2.jl:0        
     [12] pullback(f::Function, ps::Zygote.Params{Zygote.Buffer{Any, Vector{Any}}})
        @ Zygote C:\Users\usrname\.julia\packages\Zygote\Y6SC4\src\compiler\interface.jl:352       
     [13] gradient(f::Function, args::Zygote.Params{Zygote.Buffer{Any, Vector{Any}}})
        @ Zygote C:\Users\usrname\.julia\packages\Zygote\Y6SC4\src\compiler\interface.jl:75        
     [14] _gradient(f::FluxTraining.var"#70#72"{FluxTraining.var"#handlefn#78"{Learner, TrainingPhase}, FluxTraining.PropDict{Any}, Learner}, #unused#::ADAM, m::Chain{Tuple{typeof(flatten), Dense{typeof(identity), Matrix{Float32}, Vector{Float32}}}}, ps::Zygote.Params{Zygote.Buffer{Any, Vector{Any}}})
        @ FluxTraining C:\Users\usrname\.julia\packages\FluxTraining\iBFSd\src\training.jl:70      
     [15] (::FluxTraining.var"#69#71"{Learner})(handle::FluxTraining.var"#handlefn#78"{Learner, TrainingPhase}, state::FluxTraining.PropDict{Any})
        @ FluxTraining C:\Users\usrname\.julia\packages\FluxTraining\iBFSd\src\training.jl:53      
     [16] runstep(stepfn::FluxTraining.var"#69#71"{Learner}, learner::Learner, phase::TrainingPhase, initialstate::NamedTuple{(:xs, :ys), Tuple{Float32, Float32}})
        @ FluxTraining C:\Users\usrname\.julia\packages\FluxTraining\iBFSd\src\training.jl:133     
     [17] step!
        @ C:\Users\usrname\.julia\packages\FluxTraining\iBFSd\src\training.jl:51 [inlined]
     [18] (::FluxTraining.var"#67#68"{Learner, TrainingPhase, Tuple{Array{Float32, 4}, Flux.OneHotArray{UInt32, 10, 1, 2, Vector{UInt32}}}})(#unused#::Function)
        @ FluxTraining C:\Users\usrname\.julia\packages\FluxTraining\iBFSd\src\training.jl:24      
     [19] runepoch(epochfn::FluxTraining.var"#67#68"{Learner, TrainingPhase, Tuple{Array{Float32, 4}, Flux.OneHotArray{UInt32, 10, 1, 2, Vector{UInt32}}}}, learner::Learner, phase::TrainingPhase)     
        @ FluxTraining C:\Users\usrname\.julia\packages\FluxTraining\iBFSd\src\training.jl:105     
     [20] epoch!
        @ C:\Users\usrname\.julia\packages\FluxTraining\iBFSd\src\training.jl:22 [inlined]
     [21] fit!(learner::Learner, nepochs::Int64, ::Tuple{Tuple{Array{Float32, 4}, Flux.OneHotArray{UInt32, 10, 1, 2, Vector{UInt32}}}, Tuple{Array{Float32, 4}, Flux.OneHotArray{UInt32, 10, 1, 2, Vector{UInt32}}}})
        @ FluxTraining C:\Users\usrname\.julia\packages\FluxTraining\iBFSd\src\training.jl:168     
     [22] top-level scope
        @ REPL[51]:1
    

    I am completely stuck as to what goes wrong. Pointers in that regard would be appreciated, but the main issue is making the example functional, and updating the packages used to load data and the utility functions that I take from MLUtils.

    To improve the reliability of this package, could doc testing be used to ensure that in the future, the documentation examples actually run?

    opened by KronosTheLate 8
  • Add metadata field to `Learner`

    Add metadata field to `Learner`

    This adds a "metadata" PropDict to Learner for storing information that is required for training but extraneous to the training state or callback state. This is useful for unconventional training methods (issue that I am currently dealing with). In the same way that the loss function is a "parameter" that needs to be specified to standard supervised training, the metadata field holds parameters that need to be specified for unconventional training. Of course, we can't know what these parameters will be like standard training, so instead of explicit names, we provide a container to hold them.

    opened by darsnack 7
Releases(v0.3.5)
  • v0.3.5(Dec 17, 2022)

  • v0.3.4(Oct 22, 2022)

  • v0.3.3(Sep 14, 2022)

    FluxTraining v0.3.3

    Diff since v0.3.2

    Closed issues:

    • docs oddities (#113)
    • Record time trained, training loss, validation loss and performance (#119)
    • How not to have printing callbacks? (#126)
    • ignore(f) is deprecated (#128)

    Merged pull requests:

    • How not to print docstring (#127) (@KronosTheLate)
    • Fix deprecate warnings (#129) (@yuehhua)
    • Fix the quickstart tutorial (#130) (@christiangnrd)
    • fix typo in docs (#133) (@Moelf)
    • Fix README links (#134) (@lorenzoh)
    • Add ability to record and log arbitrary learner values (#136) (@darsnack)
    • Use show method for phase in MetricsPrinter (#137) (@darsnack)
    Source code(tar.gz)
    Source code(zip)
  • v0.3.2(Jun 10, 2022)

  • v0.3.1(May 27, 2022)

    FluxTraining v0.3.1

    Diff since v0.3.0

    Closed issues:

    • Simpler Learner API (#104)
    • Use Optimisers.jl (#112)
    • Add callback support for Optimisers.jl (#115)

    Merged pull requests:

    • Update Pollen documentation to new PkgTemplate workflow (#111) (@lorenzoh)
    • Add support for Optimisers.jl (#114) (@lorenzoh)
    • CompatHelper: add new compat entry for Optimisers at version 0.2, (keep existing compat) (#116) (@github-actions[bot])
    • Add callback support for Optimisers.jl (#117) (@lorenzoh)
    • CompatHelper: add new compat entry for Setfield at version 0.8, (keep existing compat) (#118) (@github-actions[bot])
    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(Apr 16, 2022)

    FluxTraining v0.3.0

    Diff since v0.2.4

    Closed issues:

    • Switch to ParameterSchedulers.jl (#106)

    Merged pull requests:

    • Add more convenient Learner method (#105) (@lorenzoh)
    • Switch to ParameterSchedulers.jl (#107) (@rejuvyesh)
    • Prepare v0.3.0 (#108) (@lorenzoh)
    Source code(tar.gz)
    Source code(zip)
  • v0.2.4(Mar 9, 2022)

    FluxTraining v0.2.4

    Diff since v0.2.3

    Closed issues:

    • Allow restricting phases during which a Metric runs (#84)

    Merged pull requests:

    • CompatHelper: bump compat for EarlyStopping to 0.2, (keep existing compat) (#92) (@github-actions[bot])
    • CompatHelper: bump compat for EarlyStopping to 0.3, (keep existing compat) (#94) (@github-actions[bot])
    • doc: fix link to TensorBoardLogger.jl (#95) (@visr)
    • Move documentation system to Pollen.jl (#96) (@lorenzoh)
    • Use ReTest.jl to run tests (#97) (@lorenzoh)
    • Add and improve a lot of docstrings and a few test cases (#99) (@lorenzoh)
    • Add phase argument to Metric (#100) (@lorenzoh)
    • CompatHelper: add new compat entry for InlineTest at version 0.2, (keep existing compat) (#101) (@github-actions[bot])
    • (Documentation) Document Learner components (#102) (@lorenzoh)
    • Add Flux 0.13 compatibility (#103) (@lorenzoh)
    Source code(tar.gz)
    Source code(zip)
  • v0.2.3(Oct 21, 2021)

  • v0.2.2(Oct 12, 2021)

  • v0.2.1(Jul 26, 2021)

  • v0.2.0(Jul 3, 2021)

    FluxTraining v0.2.0

    Diff since v0.1.3

    Added

    Changed

    • Batch* renamed to Step*:
      • events: BatchBegin now StepBegin, BatchEnd now StepEnd
      • CancelBatchException now CancelStepException.
      • field Learner.batch now Learner.step
    • Learner.step/batch is no longer a special struct but now a PropDict, allowing you to set arbitrary fields.
    • Learner.model can now be a NamedTuple/Tuple of models for use in custom training loops. Likewise, learner.params now resembles the structure of learner.model, allowing separate access to parameters of different models.
    • Callbacks
      • Added init! method for callback initilization, replacing the Init event which required a Phase to implement.
      • Scheduler now has internal step counter and no longer relies on Recorder's history. This makes it easier to replace the scheduler without needing to offset the new schedules.
      • EarlyStopping callback now uses criteria from EarlyStopping.jl

    Removed

    • Removed old training API. Methods fitbatch!, fitbatchphase!, fitepoch!, fitepochphase! have all been removed.

    Closed issues:

    • Scheduler applies schedules per batch by default (#68)
    • Recorder does not work with models with non-Array inputs. (#80)

    Merged pull requests:

    • CompatHelper: bump compat for "BSON" to "0.3" (#69) (@github-actions[bot])
    • use EarlyStopping.jl for stopping criteria (#72) (@lorenzoh)
    • CompatHelper: bump compat for "PrettyTables" to "0.12" (#73) (@github-actions[bot])
    • Move documentation to Pollen.jl (#77) (@lorenzoh)
    • Revert onecycle (#78) (@lorenzoh)
    • Remove samplesfield from History (#81) (@lorenzoh)
    • New training API and QoL improvements (v0.2.0) (#83) (@lorenzoh)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Feb 21, 2021)

    FluxTraining v0.1.3

    Diff since v0.1.2

    Closed issues:

    • Metrics wraps Metric(s) in Metric(s) (#66)
    • Unnecessary softmax in accuracy? (#67)

    Merged pull requests:

    • Internal callback changes (#65) (@lorenzoh)
    • fix #66 make Metric subtype AbstractMetric (#70) (@lorenzoh)
    • Lorenzoh/fix/67 (#71) (@lorenzoh)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.2(Jan 28, 2021)

  • v0.1.1(Jan 18, 2021)

    FluxTraining v0.1.1

    Diff since v0.1.0

    Closed issues:

    • Link to Loss broken (#40)
    • Early stopping link broken (#41)
    • BatchEnd link broken (#42)
    • Break out Schedule (#44)
    • How to verify GPU is working? (#47)
    • What is the role of the test data? (#48)
    • What do you think of Data Modules? (#53)

    Merged pull requests:

    • Add testing as CI step (#36) (@lorenzoh)
    • Better docstrings (#37) (@lorenzoh)
    • Typo (#43) (@drozzy)
    • WRONG order of arguments to the Learner. (#45) (@drozzy)
    • Fix issue #42 - missing docstrings (#49) (@lorenzoh)
    • add EarlyStopping docstring (#50) (@lorenzoh)
    • Update callback reference section on metrics (#51) (@lorenzoh)
    • Remove no longer needed dependencies from Project.toml (#52) (@lorenzoh)
    • Add SanityCheck callback (#56) (@lorenzoh)
    • Fix GarbageCollect callback (#57) (@lorenzoh)
    • Fix TensorBoard image serialization (#58) (@lorenzoh)
    • Sanitycheck (#60) (@lorenzoh)
    • update compat bounds (#61) (@lorenzoh)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Nov 7, 2020)

    FluxTraining v0.1.0

    Closed issues:

    • Collaborating on a FastAI port? (#13)

    Merged pull requests:

    • Remove unused package LearnBase (#26) (@nrhodes)
    • Fix protected tests (#28) (@nrhodes)
    • Log model histograms in TensorBoard (#30) (@ToucheSir)
    Source code(tar.gz)
    Source code(zip)
Owner
CompSci student from Berlin, currently working on FastAI.jl
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Fang Zhonghao 13 Nov 19, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
PyTorch implementation of Pointnet2/Pointnet++

Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss

Erik Wijmans 1.2k Dec 29, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022