SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

Overview

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Guided Adaptive Learning Rate for Training Large Transformer Models" (ICLR 2022).


Getting Start

  1. Pull and run docker
    pytorch/pytorch:1.5.1-cuda10.1-cudnn7-devel
  2. Install requirements
    pip install -r requirements.txt

Data and Model

  1. Download data and pre-trained models
    ./download.sh
    Please refer to this link for details on the GLUE benchmark.
  2. Preprocess data
    ./experiments/glue/prepro.sh
    For the most updated data processing details, please refer to the mt-dnn repo.

Fine-tuning Pre-trained Models using SAGE

We provide an example script for fine-tuning a pre-trained BERT-base model on MNLI using Adamax-SAGE:

./scripts/train_mnli_usadamax.sh GPUID

A few notices:

  • learning_rate and beta3 are two of the most important hyper-parameters. learning_rate that works well for Adamax/AdamW-SAGE is usually 2 to 5 times larger than that works well for Adamax/AdamW, depending on the tasks. beta3 that works well for Adamax/AdamW-SAGE is usually in the range of 0.6 and 0.9, depending on the tasks.

  • To use AdamW-SAGE, set argument --optim=usadamw. The current codebase only contains the implementation of Adamax-SAGE and AdamW-SAGE. Please refer to module/bert_optim.py for details. Please refer to our paper for integrating SAGE on other optimizers.

  • To fine-tune a pre-trained RoBERTa-base model, set arguments --init_checkpoint to the model path and set --encoder_type to 2. Other supported models are listed in pretrained_models.py.

  • To fine-tune on other tasks, set arguments --train_datasets and --test_datasets to the corresponding task names.


Citation

@inproceedings{
liang2022no,
title={No Parameters Left Behind: Sensitivity Guided Adaptive Learning Rate for Training Large Transformer Models},
author={Chen Liang and Haoming Jiang and Simiao Zuo and Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen and Tuo Zhao},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=cuvga_CiVND}
}

Contact Information

For help or issues related to this package, please submit a GitHub issue. For personal questions related to this paper, please contact Chen Liang ([email protected]).

Owner
Chen Liang
Chen Liang
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022