Implementation of Online Label Smoothing in PyTorch

Overview

Online Label Smoothing

Build Status

Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing.

Introduction

As the abstract states, OLS is a strategy to generates soft labels based on the statistics of the model prediction for the target category. The core idea is that instead of using fixed soft labels for every epoch, we go updating them based on the stats of correct predicted samples.

More details and experiment results can be found in the paper.

Usage

Usage of OnlineLabelSmoothing is pretty straightforward. Just use it as you would use PyTorch CrossEntropyLoss. The only thing that is different is that at the end of the epoch you should call OnlineLabelSmoothing.next_epoch(). It updates the OnlineLabelSmoothing.supervise matrix that will be used in the next epoch for the soft labels.

Standalone

from ols import OnlineLabelSmoothing
import torch

k = 4  # Number of classes
b = 32  # Batch size
criterion = OnlineLabelSmoothing(alpha=0.5, n_classes=k, smoothing=0.1)
logits = torch.randn(b, k)  # Predictions
y = torch.randint(k, (b,))  # Ground truth

loss = criterion(logits, y)

PyTorch

from ols import OnlineLabelSmoothing

criterion = OnlineLabelSmoothing(alpha=..., n_classes=...)
for epoch in range(...):  # loop over the dataset multiple times
    for i, data in enumerate(...):
        inputs, labels = data
        # zero the parameter gradients
        optimizer.zero_grad()
        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
    print(f'Epoch {epoch} finished!')
    # Update the soft labels for next epoch
    criterion.next_epoch()

PyTorchLightning

With PL you can simply call next_epoch() at the end of the epoch with:

import pytorch_lightning as pl
from ols import OnlineLabelSmoothing


class LitClassification(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.criterion = OnlineLabelSmoothing(alpha=..., n_classes=...)

    def forward(self, x):
        pass

    def configure_optimizers(self):
        pass

    def training_step(self, train_batch, batch_idx):
        pass

    def on_train_epoch_end(self, **kwargs):
        self.criterion.next_epoch()

Installation

pip install -r requirements.txt

Citation

@misc{zhang2020delving,
      title={Delving Deep into Label Smoothing}, 
      author={Chang-Bin Zhang and Peng-Tao Jiang and Qibin Hou and Yunchao Wei and Qi Han and Zhen Li and Ming-Ming Cheng},
      year={2020},
      eprint={2011.12562},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023