Implementation of Online Label Smoothing in PyTorch

Overview

Online Label Smoothing

Build Status

Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing.

Introduction

As the abstract states, OLS is a strategy to generates soft labels based on the statistics of the model prediction for the target category. The core idea is that instead of using fixed soft labels for every epoch, we go updating them based on the stats of correct predicted samples.

More details and experiment results can be found in the paper.

Usage

Usage of OnlineLabelSmoothing is pretty straightforward. Just use it as you would use PyTorch CrossEntropyLoss. The only thing that is different is that at the end of the epoch you should call OnlineLabelSmoothing.next_epoch(). It updates the OnlineLabelSmoothing.supervise matrix that will be used in the next epoch for the soft labels.

Standalone

from ols import OnlineLabelSmoothing
import torch

k = 4  # Number of classes
b = 32  # Batch size
criterion = OnlineLabelSmoothing(alpha=0.5, n_classes=k, smoothing=0.1)
logits = torch.randn(b, k)  # Predictions
y = torch.randint(k, (b,))  # Ground truth

loss = criterion(logits, y)

PyTorch

from ols import OnlineLabelSmoothing

criterion = OnlineLabelSmoothing(alpha=..., n_classes=...)
for epoch in range(...):  # loop over the dataset multiple times
    for i, data in enumerate(...):
        inputs, labels = data
        # zero the parameter gradients
        optimizer.zero_grad()
        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
    print(f'Epoch {epoch} finished!')
    # Update the soft labels for next epoch
    criterion.next_epoch()

PyTorchLightning

With PL you can simply call next_epoch() at the end of the epoch with:

import pytorch_lightning as pl
from ols import OnlineLabelSmoothing


class LitClassification(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.criterion = OnlineLabelSmoothing(alpha=..., n_classes=...)

    def forward(self, x):
        pass

    def configure_optimizers(self):
        pass

    def training_step(self, train_batch, batch_idx):
        pass

    def on_train_epoch_end(self, **kwargs):
        self.criterion.next_epoch()

Installation

pip install -r requirements.txt

Citation

@misc{zhang2020delving,
      title={Delving Deep into Label Smoothing}, 
      author={Chang-Bin Zhang and Peng-Tao Jiang and Qibin Hou and Yunchao Wei and Qi Han and Zhen Li and Ming-Ming Cheng},
      year={2020},
      eprint={2011.12562},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data

VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data Introduction Requirements Installation and Setup Supported Hardware and Software R

SigmaLab 1 Jun 14, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022