This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Related tags

Deep LearningCQFS
Overview

Collaborative-driven Quantum Feature Selection

This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websites of our quantum computing group and of our recommender systems group for more information on our teams and works. This repository contains the source code for the article "Feature Selection for Recommender Systems with Quantum Computing".

Here we explain how to install dependencies, setup the connection to D-Wave Leap quantum cloud services and how to run experiments included in this repository.

Installation

NOTE: This repository requires Python 3.7

It is suggested to install all the required packages into a new Python environment. So, after repository checkout, enter the repository folder and run the following commands to create a new environment:

If you're using virtualenv:

virtualenv -p python3 cqfs
source cqfs/bin/activate

If you're using conda:

conda create -n cqfs python=3.7 anaconda
conda activate cqfs

Remember to add this project in the PYTHONPATH environmental variable if you plan to run the experiments on the terminal:

export PYTHONPATH=$PYTHONPATH:/path/to/project/folder

Then, make sure you correctly activated the environment and install all the required packages through pip:

pip install -r requirements.txt

After installing the dependencies, it is suggested to compile Cython code in the repository.

In order to compile you must first have installed: gcc and python3 dev. Under Linux those can be installed with the following commands:

sudo apt install gcc 
sudo apt-get install python3-dev

If you are using Windows as operating system, the installation procedure is a bit more complex. You may refer to THIS guide.

Now you can compile all Cython algorithms by running the following command. The script will compile within the current active environment. The code has been developed for Linux and Windows platforms. During the compilation you may see some warnings.

python run_compile_all_cython.py

D-Wave Setup

In order to make use of D-Wave cloud services you must first sign-up to D-Wave Leap and get your API token.

Then, you need to run the following command in the newly created Python environment:

dwave setup

This is a guided setup for D-Wave Ocean SDK. When asked to select non-open-source packages to install you should answer y and install at least D-Wave Drivers (the D-Wave Problem Inspector package is not required, but could be useful to analyse problem solutions, if solving problems with the QPU only).

Then, continue the configuration by setting custom properties (or keeping the default ones, as we suggest), apart from the Authentication token field, where you should paste your API token obtained on the D-Wave Leap dashboard.

You should now be able to connect to D-Wave cloud services. In order to verify the connection, you can use the following command, which will send a test problem to D-Wave's QPU:

dwave ping

Running CQFS Experiments

First of all, you need to prepare the original files for the datasets.

For The Movies Dataset you need to download The Movies Dataset from Kaggle and place the compressed files in the directory recsys/Data_manager_offline_datasets/TheMoviesDataset/, making sure the file is called the-movies-dataset.zip.

For CiteULike_a you need to download the following .zip file and place it in the directory recsys/Data_manager_offline_datasets/CiteULike/, making sure the file is called CiteULike_a_t.zip.

We cannot provide data for Xing Challenge 2017, but if you have the dataset available, place the compressed file containing the dataset's original files in the directory recsys/Data_manager_offline_datasets/XingChallenge2017/, making sure the file is called xing_challenge_data_2017.zip.

After preparing the datasets, you should run the following command under the data directory:

python split_NameOfTheDataset.py

This python script will generate the data splits used in the experiments. Moreover, it will preprocess the dataset and check for any error in the preprocessing phase. The resulting splits are saved in the recsys/Data_manager_split_datasets directory.

After splitting the dataset, you can actually run the experiments. All the experiment scripts are in the experiments directory, so enter this folder first. Each dataset has separated experiment scripts that you can find in the corresponding directories. From now on, we will assume that you are running the following commands in the dataset-specific folders, thus running the scripts contained there.

Collaborative models

First of all, we need to optimize the chosen collaborative models to use with CQFS. To do so, run the following command:

python CollaborativeFiltering.py

The resulting models will be saved into the results directory.

CQFS

Then, you can run the CQFS procedure. We divided the procedure into a selection phase and a recommendation phase. To perform the selection through CQFS run the following command:

python CQFS.py

This script will solve the CQFS problem on the corresponding dataset and save all the selected features in appropriate subdirectories under the results directory.

After solving the feature selection problem, you should run the following command:

python CQFSTrainer.py

This script will optimize an ItemKNN content-based recommender system for each selection corresponding to the given hyperparameters (and previously obtained through CQFS), using only the selected features. Again, all the results are saved in the corresponding subdirectories under the results directory.

NOTE: Each selection with D-Wave Leap hybrid service on these problems is performed in around 8 seconds for The Movies Dataset and around 30 for CiteULike_a. Therefore, running the script as it is would result in consuming all the free time given with the developer plan on D-Wave Leap and may result in errors or invalid selections when there's no free time remaining.

We suggest to reduce the number of hyperparameters passed when running the experiments or, even better, chose a collaborative model and perform all the experiments on it.

This is not the case when running experiments with Simulated Annealing, since it is executed locally.

For Xing Challenge 2017 experiments run directly on the D-Wave QPU. Leaving all the hyperparameters unchanged, all the experiments should not exceed the free time of the developer plan. Pay attention when increasing the number of reads from the sampler or the annealing time.

Baselines

In order to obtain the baseline evaluations you can run the corresponding scripts with the following commands:

# ItemKNN content-based with all the features
python baseline_CBF.py

# ItemKNN content-based with features selected through TF-IDF
python baseline_TFIDF.py

# CFeCBF feature weighting baseline
python baseline_CFW.py

Acknowledgements

Software produced by Riccardo Nembrini. Recommender systems library by Maurizio Ferrari Dacrema.

Article authors: Riccardo Nembrini, Maurizio Ferrari Dacrema, Paolo Cremonesi

Owner
Quantum Computing Lab @ Politecnico di Milano
Quantum Machine Learning group
Quantum Computing Lab @ Politecnico di Milano
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022