Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

Related tags

Deep Learningcrest
Overview

CReST in Tensorflow 2

Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille and Fan Yang.

  • This is not an officially supported Google product.

Install dependencies

sudo apt install python3-dev python3-virtualenv python3-tk imagemagick
virtualenv -p python3 --system-site-packages env3
. env3/bin/activate
pip install -r requirements.txt
  • The code has been tested on Ubuntu 18.04 with CUDA 10.2.

Environment setting

. env3/bin/activate
export ML_DATA=/path/to/your/data
export ML_DIR=/path/to/your/code
export RESULT=/path/to/your/result
export PYTHONPATH=$PYTHONPATH:$ML_DIR

Datasets

Download or generate the datasets as follows:

  • CIFAR10 and CIFAR100: Follow the steps to download and generate balanced CIFAR10 and CIFAR100 datasets. Put it under ${ML_DATA}/cifar, for example, ${ML_DATA}/cifar/cifar10-test.tfrecord.
  • Long-tailed CIFAR10 and CIFAR100: Follow the steps to download the datasets prepared by Cui et al. Put it under ${ML_DATA}/cifar-lt, for example, ${ML_DATA}/cifar-lt/cifar-10-data-im-0.1.

Running experiment on Long-tailed CIFAR10, CIFAR100

Run MixMatch (paper) and FixMatch (paper):

  • Specify method to run via --method. It can be fixmatch or mixmatch.

  • Specify dataset via --dataset. It can be cifar10lt or cifar100lt.

  • Specify the class imbalanced ratio, i.e., the number of training samples from the most minority class over that from the most majority class, via --class_im_ratio.

  • Specify the percentage of labeled data via --percent_labeled.

  • Specify the number of generations for self-training via --num_generation.

  • Specify whether to use distribution alignment via --do_distalign.

  • Specify the initial distribution alignment temperature via --dalign_t.

  • Specify how distribution alignment is applied via --how_dalign. It can be constant or adaptive.

    python -m train_and_eval_loop \
      --model_dir=/tmp/model \
      --method=fixmatch \
      --dataset=cifar10lt \
      --input_shape=32,32,3 \
      --class_im_ratio=0.01 \
      --percent_labeled=0.1 \
      --fold=1 \
      --num_epoch=64 \
      --num_generation=6 \
      --sched_level=1 \
      --dalign_t=0.5 \
      --how_dalign=adaptive \
      --do_distalign=True

Results

The code reproduces main results of the paper. For all settings and methods, we run experiments on 5 different folds and report the mean and standard deviations. Note that the numbers may not exactly match those from the papers as there are extra randomness coming from the training.

Results on Long-tailed CIFAR10 with 10% labeled data (Table 1 in the paper).

gamma=50 gamma=100 gamma=200
FixMatch 79.4 (0.98) 66.2 (0.83) 59.9 (0.44)
CReST 83.7 (0.40) 75.4 (1.62) 63.9 (0.67)
CReST+ 84.5 (0.41) 77.7 (1.22) 67.5 (1.36)

Training with Multiple GPUs

  • Simply set CUDA_VISIBLE_DEVICES=0,1,2,3 or any number of GPUs.
  • Make sure that batch size is divisible by the number of GPUs.

Augmentation

  • One can concatenate different augmentation shortkeys to compose an augmentation sequence.
    • d: default augmentation, resize and shift.
    • h: horizontal flip.
    • ra: random augment with all augmentation ops.
    • rc: random augment with color augmentation ops only.
    • rg: random augment with geometric augmentation ops only.
    • c: cutout.
    • For example, dhrac applies shift, flip, random augment with all ops, followed by cutout.

Citing this work

@article{wei2021crest,
    title={CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning},
    author={Chen Wei and Kihyuk Sohn and Clayton Mellina and Alan Yuille and Fan Yang},
    journal={arXiv preprint arXiv:2102.09559},
    year={2021},
}
Owner
Google Research
Google Research
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022