Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

Related tags

Deep Learningcrest
Overview

CReST in Tensorflow 2

Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille and Fan Yang.

  • This is not an officially supported Google product.

Install dependencies

sudo apt install python3-dev python3-virtualenv python3-tk imagemagick
virtualenv -p python3 --system-site-packages env3
. env3/bin/activate
pip install -r requirements.txt
  • The code has been tested on Ubuntu 18.04 with CUDA 10.2.

Environment setting

. env3/bin/activate
export ML_DATA=/path/to/your/data
export ML_DIR=/path/to/your/code
export RESULT=/path/to/your/result
export PYTHONPATH=$PYTHONPATH:$ML_DIR

Datasets

Download or generate the datasets as follows:

  • CIFAR10 and CIFAR100: Follow the steps to download and generate balanced CIFAR10 and CIFAR100 datasets. Put it under ${ML_DATA}/cifar, for example, ${ML_DATA}/cifar/cifar10-test.tfrecord.
  • Long-tailed CIFAR10 and CIFAR100: Follow the steps to download the datasets prepared by Cui et al. Put it under ${ML_DATA}/cifar-lt, for example, ${ML_DATA}/cifar-lt/cifar-10-data-im-0.1.

Running experiment on Long-tailed CIFAR10, CIFAR100

Run MixMatch (paper) and FixMatch (paper):

  • Specify method to run via --method. It can be fixmatch or mixmatch.

  • Specify dataset via --dataset. It can be cifar10lt or cifar100lt.

  • Specify the class imbalanced ratio, i.e., the number of training samples from the most minority class over that from the most majority class, via --class_im_ratio.

  • Specify the percentage of labeled data via --percent_labeled.

  • Specify the number of generations for self-training via --num_generation.

  • Specify whether to use distribution alignment via --do_distalign.

  • Specify the initial distribution alignment temperature via --dalign_t.

  • Specify how distribution alignment is applied via --how_dalign. It can be constant or adaptive.

    python -m train_and_eval_loop \
      --model_dir=/tmp/model \
      --method=fixmatch \
      --dataset=cifar10lt \
      --input_shape=32,32,3 \
      --class_im_ratio=0.01 \
      --percent_labeled=0.1 \
      --fold=1 \
      --num_epoch=64 \
      --num_generation=6 \
      --sched_level=1 \
      --dalign_t=0.5 \
      --how_dalign=adaptive \
      --do_distalign=True

Results

The code reproduces main results of the paper. For all settings and methods, we run experiments on 5 different folds and report the mean and standard deviations. Note that the numbers may not exactly match those from the papers as there are extra randomness coming from the training.

Results on Long-tailed CIFAR10 with 10% labeled data (Table 1 in the paper).

gamma=50 gamma=100 gamma=200
FixMatch 79.4 (0.98) 66.2 (0.83) 59.9 (0.44)
CReST 83.7 (0.40) 75.4 (1.62) 63.9 (0.67)
CReST+ 84.5 (0.41) 77.7 (1.22) 67.5 (1.36)

Training with Multiple GPUs

  • Simply set CUDA_VISIBLE_DEVICES=0,1,2,3 or any number of GPUs.
  • Make sure that batch size is divisible by the number of GPUs.

Augmentation

  • One can concatenate different augmentation shortkeys to compose an augmentation sequence.
    • d: default augmentation, resize and shift.
    • h: horizontal flip.
    • ra: random augment with all augmentation ops.
    • rc: random augment with color augmentation ops only.
    • rg: random augment with geometric augmentation ops only.
    • c: cutout.
    • For example, dhrac applies shift, flip, random augment with all ops, followed by cutout.

Citing this work

@article{wei2021crest,
    title={CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning},
    author={Chen Wei and Kihyuk Sohn and Clayton Mellina and Alan Yuille and Fan Yang},
    journal={arXiv preprint arXiv:2102.09559},
    year={2021},
}
Owner
Google Research
Google Research
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
Advanced yabai wooting scripts

Yabai Wooting scripts Installation requirements Both https://github.com/xiamaz/python-yabai-client and https://github.com/xiamaz/python-wooting-rgb ne

Max Zhao 3 Dec 31, 2021
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022