[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Related tags

Deep LearningPTF
Overview

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

This repository contains the implementation of our paper Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration . The code is largely based on Occupancy Networks - Learning 3D Reconstruction in Function Space.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code useful, please consider citing:

@InProceedings{PTF:CVPR:2021,
    author = {Shaofei Wang and Andreas Geiger and Siyu Tang},
    title = {Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration},
    booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021}
}

Installation

This repository has been tested on the following platforms:

  1. Python 3.7, PyTorch 1.6 with CUDA 10.2 and cuDNN 7.6.5, Ubuntu 20.04
  2. Python 3.7, PyTorch 1.6 with CUDA 10.1 and cuDNN 7.6.4, CentOS 7.9.2009

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called PTF using

conda env create -n PTF python=3.7
conda activate PTF

Second, install PyTorch 1.6 via the official PyTorch website.

Third, install dependencies via

pip install -r requirements.txt

Fourth, manually install pytorch-scatter.

Lastly, compile the extension modules. You can do this via

python setup.py build_ext --inplace

(Optional) if you want to use the registration code under smpl_registration/, you need to install kaolin. Download the code from the kaolin repository, checkout to commit e7e513173bd4159ae45be6b3e156a3ad156a3eb9 and install it according to the instructions.

(Optional) if you want to train/evaluate single-view models (which corresponds to configurations in configs/cape_sv), you need to install OpenDR to render depth images. You need to first install OSMesa, here is the command of installing it on Ubuntu:

sudo apt-get install libglu1-mesa-dev freeglut3-dev mesa-common-dev libosmesa6-dev

For installing OSMesa on CentOS 7, please check this related issue. After installing OSMesa, install OpenDR via:

pip install opendr

Build the dataset

To prepare the dataset for training/evaluation, you have to first download the CAPE dataset from the CAPE website.

  1. Download SMPL v1.0, clean-up the chumpy objects inside the models using this code, and rename the files and extract them to ./body_models/smpl/, eventually, the ./body_models folder should have the following structure:
    body_models
     └-- smpl
     	├-- male
     	|   └-- model.pkl
     	└-- female
     	    └-- model.pkl
    
    

Besides the SMPL models, you will also need to download all the .pkl files from IP-Net repository and put them under ./body_models/misc/. Finally, run the following script to extract necessary SMPL parameters used in our code:

python extract_smpl_parameters.py

The extracted SMPL parameters will be save into ./body_models/misc/.

  1. Extract CAPE dataset to an arbitrary path, denoted as ${CAPE_ROOT}. The extracted dataset should have the following structure:
    ${CAPE_ROOT}
     ├-- 00032
     ├-- 00096
     |   ...
     ├-- 03394
     └-- cape_release
    
    
  2. Create data directory under the project directory.
  3. Modify the parameters in preprocess/build_dataset.sh accordingly (i.e. modify the --dataset_path to ${CAPE_ROOT}) to extract training/evaluation data.
  4. Run preprocess/build_dataset.sh to preprocess the CAPE dataset.

Pre-trained models

We provide pre-trained PTF and IP-Net models with two encoder resolutions, that is, 64x3 and 128x3. After downloading them, please put them under respective directories ./out/cape or ./out/cape_sv.

Generating Meshes

To generate all evaluation meshes using a trained model, use

python generate.py configs/cape/{config}.yaml

Alternatively, if you want to parallelize the generation on a HPC cluster, use:

python generate.py --subject-idx ${SUBJECT_IDX} --sequence-idx ${SEQUENCE_IDX} configs/cape/${config}.yaml

to generate meshes for specified subject/sequence combination. A list of all subject/sequence combinations can be found in ./misc/subject_sequence.txt.

SMPL/SMPL+D Registration

To register SMPL/SMPL+D models to the generated meshes, use either of the following:

python smpl_registration/fit_SMPLD_PTFs.py --num-joints 24 --use-parts --init-pose configs/cape/${config}.yaml # for PTF
python smpl_registration/fit_SMPLD_PTFs.py --num-joints 14 --use-parts configs/cape/${config}.yaml # for IP-Net

Note that registration is very slow, taking roughly 1-2 minutes per frame. If you have access to HPC cluster, it is advised to parallelize over subject/sequence combinations using the same subject/sequence input arguments for generating meshes.

Training

Finally, to train a new network from scratch, run

python train.py --num_workers 8 configs/cape/${config}.yaml

You can monitor on http://localhost:6006 the training process using tensorboard:

tensorboard --logdir ${OUTPUT_DIR}/logs --port 6006

where you replace ${OUTPUT_DIR} with the respective output directory.

License

We employ MIT License for the PTF code, which covers

extract_smpl_parameters.py
generate.py
train.py
setup.py
im2mesh/
preprocess/

Modules not covered by our license are modified versions from IP-Net (./smpl_registration) and SMPL-X (./human_body_prior); for these parts, please consult their respective licenses and cite the respective papers.

An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022