[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Related tags

Deep LearningPTF
Overview

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

This repository contains the implementation of our paper Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration . The code is largely based on Occupancy Networks - Learning 3D Reconstruction in Function Space.

You can find detailed usage instructions for training your own models and using pretrained models below.

If you find our code useful, please consider citing:

@InProceedings{PTF:CVPR:2021,
    author = {Shaofei Wang and Andreas Geiger and Siyu Tang},
    title = {Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration},
    booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021}
}

Installation

This repository has been tested on the following platforms:

  1. Python 3.7, PyTorch 1.6 with CUDA 10.2 and cuDNN 7.6.5, Ubuntu 20.04
  2. Python 3.7, PyTorch 1.6 with CUDA 10.1 and cuDNN 7.6.4, CentOS 7.9.2009

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called PTF using

conda env create -n PTF python=3.7
conda activate PTF

Second, install PyTorch 1.6 via the official PyTorch website.

Third, install dependencies via

pip install -r requirements.txt

Fourth, manually install pytorch-scatter.

Lastly, compile the extension modules. You can do this via

python setup.py build_ext --inplace

(Optional) if you want to use the registration code under smpl_registration/, you need to install kaolin. Download the code from the kaolin repository, checkout to commit e7e513173bd4159ae45be6b3e156a3ad156a3eb9 and install it according to the instructions.

(Optional) if you want to train/evaluate single-view models (which corresponds to configurations in configs/cape_sv), you need to install OpenDR to render depth images. You need to first install OSMesa, here is the command of installing it on Ubuntu:

sudo apt-get install libglu1-mesa-dev freeglut3-dev mesa-common-dev libosmesa6-dev

For installing OSMesa on CentOS 7, please check this related issue. After installing OSMesa, install OpenDR via:

pip install opendr

Build the dataset

To prepare the dataset for training/evaluation, you have to first download the CAPE dataset from the CAPE website.

  1. Download SMPL v1.0, clean-up the chumpy objects inside the models using this code, and rename the files and extract them to ./body_models/smpl/, eventually, the ./body_models folder should have the following structure:
    body_models
     └-- smpl
     	├-- male
     	|   └-- model.pkl
     	└-- female
     	    └-- model.pkl
    
    

Besides the SMPL models, you will also need to download all the .pkl files from IP-Net repository and put them under ./body_models/misc/. Finally, run the following script to extract necessary SMPL parameters used in our code:

python extract_smpl_parameters.py

The extracted SMPL parameters will be save into ./body_models/misc/.

  1. Extract CAPE dataset to an arbitrary path, denoted as ${CAPE_ROOT}. The extracted dataset should have the following structure:
    ${CAPE_ROOT}
     ├-- 00032
     ├-- 00096
     |   ...
     ├-- 03394
     └-- cape_release
    
    
  2. Create data directory under the project directory.
  3. Modify the parameters in preprocess/build_dataset.sh accordingly (i.e. modify the --dataset_path to ${CAPE_ROOT}) to extract training/evaluation data.
  4. Run preprocess/build_dataset.sh to preprocess the CAPE dataset.

Pre-trained models

We provide pre-trained PTF and IP-Net models with two encoder resolutions, that is, 64x3 and 128x3. After downloading them, please put them under respective directories ./out/cape or ./out/cape_sv.

Generating Meshes

To generate all evaluation meshes using a trained model, use

python generate.py configs/cape/{config}.yaml

Alternatively, if you want to parallelize the generation on a HPC cluster, use:

python generate.py --subject-idx ${SUBJECT_IDX} --sequence-idx ${SEQUENCE_IDX} configs/cape/${config}.yaml

to generate meshes for specified subject/sequence combination. A list of all subject/sequence combinations can be found in ./misc/subject_sequence.txt.

SMPL/SMPL+D Registration

To register SMPL/SMPL+D models to the generated meshes, use either of the following:

python smpl_registration/fit_SMPLD_PTFs.py --num-joints 24 --use-parts --init-pose configs/cape/${config}.yaml # for PTF
python smpl_registration/fit_SMPLD_PTFs.py --num-joints 14 --use-parts configs/cape/${config}.yaml # for IP-Net

Note that registration is very slow, taking roughly 1-2 minutes per frame. If you have access to HPC cluster, it is advised to parallelize over subject/sequence combinations using the same subject/sequence input arguments for generating meshes.

Training

Finally, to train a new network from scratch, run

python train.py --num_workers 8 configs/cape/${config}.yaml

You can monitor on http://localhost:6006 the training process using tensorboard:

tensorboard --logdir ${OUTPUT_DIR}/logs --port 6006

where you replace ${OUTPUT_DIR} with the respective output directory.

License

We employ MIT License for the PTF code, which covers

extract_smpl_parameters.py
generate.py
train.py
setup.py
im2mesh/
preprocess/

Modules not covered by our license are modified versions from IP-Net (./smpl_registration) and SMPL-X (./human_body_prior); for these parts, please consult their respective licenses and cite the respective papers.

Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022