Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Overview

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

This repository is the official implementation of "Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech".

multi-task learning meta learning

Meta-TTS

image

Requirements

This is how I build my environment, which is not exactly needed to be the same:

  • Sign up for Comet.ml, find out your workspace and API key via www.comet.ml/api/my/settings and fill them in config/comet.py. Comet logger is used throughout train/val/test stages.
    • Check my training logs here.
  • [Optional] Install pyenv for Python version control, change to Python 3.8.6.
# After download and install pyenv:
pyenv install 3.8.6
pyenv local 3.8.6
  • [Optional] Install pyenv-virtualenv as a plugin of pyenv for clean virtual environment.
# After install pyenv-virtualenv
pyenv virtualenv meta-tts
pyenv activate meta-tts
# Install Cython first:
pip install cython

# Then install learn2learn from source:
git clone https://github.com/learnables/learn2learn.git
cd learn2learn
pip install -e .
  • Install requirements:
pip install -r requirements.txt

Proprocessing

First, download LibriTTS and VCTK, then change the paths in config/LibriTTS/preprocess.yaml and config/VCTK/preprocess.yaml, then run

python3 prepare_align.py config/LibriTTS/preprocess.yaml
python3 prepare_align.py config/VCTK/preprocess.yaml

for some preparations.

Alignments of LibriTTS is provided here, and the alignments of VCTK is provided here. You have to unzip the files into preprocessed_data/LibriTTS/TextGrid/ and preprocessed_data/VCTK/TextGrid/.

Then run the preprocessing script:

python3 preprocess.py config/LibriTTS/preprocess.yaml

# Copy stats from LibriTTS to VCTK to keep pitch/energy normalization the same shift and bias.
cp preprocessed_data/LibriTTS/stats.json preprocessed_data/VCTK/

python3 preprocess.py config/VCTK/preprocess.yaml

Training

To train the models in the paper, run this command:

python3 main.py -s train \
                -p config/preprocess/<corpus>.yaml \
                -m config/model/base.yaml \
                -t config/train/base.yaml config/train/<corpus>.yaml \
                -a config/algorithm/<algorithm>.yaml

To reproduce, please use 8 V100 GPUs for meta models, and 1 V100 GPU for baseline models, or else you might need to tune gradient accumulation step (grad_acc_step) setting in config/train/base.yaml to get the correct meta batch size. Note that each GPU has its own random seed, so even the meta batch size is the same, different number of GPUs is equivalent to different random seed.

After training, you can find your checkpoints under output/ckpt/ / / /checkpoints/ , where the project name is set in config/comet.py.

To inference the models, run:

python3 main.py -s test \
                -p config/preprocess/<corpus>.yaml \
                -m config/model/base.yaml \
                -t config/train/base.yaml config/train/<corpus>.yaml \
                -a config/algorithm/<algorithm>.yaml \
                -e <experiment_key> -c <checkpoint_file_name>

and the results would be under output/result/ / / / .

Evaluation

Note: The evaluation code is not well-refactored yet.

cd evaluation/ and check README.md

Pre-trained Models

Note: The checkpoints are with older version, might not capatiable with the current code. We would fix the problem in the future.

Since our codes are using Comet logger, you might need to create a dummy experiment by running:

from comet_ml import Experiment
experiment = Experiment()

then put the checkpoint files under output/ckpt/LibriTTS/ / /checkpoints/ .

You can download pretrained models here.

Results

Corpus LibriTTS VCTK
Speaker Similarity
Speaker Verification

Synthesized Speech Detection

Owner
Sung-Feng Huang
A Ph.D. student at National Taiwan University. Main research includes unsupervised learning, meta learning, speech separation, ASR, and some NLP.
Sung-Feng Huang
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
A minimalist tool to display a network graph.

A tool to get a minimalist view of any architecture This tool has only be tested with the models included in this repo. Therefore, I can't guarantee t

Thibault Castells 1 Feb 11, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022