Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Overview

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

This repository is the official implementation of "Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech".

multi-task learning meta learning

Meta-TTS

image

Requirements

This is how I build my environment, which is not exactly needed to be the same:

  • Sign up for Comet.ml, find out your workspace and API key via www.comet.ml/api/my/settings and fill them in config/comet.py. Comet logger is used throughout train/val/test stages.
    • Check my training logs here.
  • [Optional] Install pyenv for Python version control, change to Python 3.8.6.
# After download and install pyenv:
pyenv install 3.8.6
pyenv local 3.8.6
  • [Optional] Install pyenv-virtualenv as a plugin of pyenv for clean virtual environment.
# After install pyenv-virtualenv
pyenv virtualenv meta-tts
pyenv activate meta-tts
# Install Cython first:
pip install cython

# Then install learn2learn from source:
git clone https://github.com/learnables/learn2learn.git
cd learn2learn
pip install -e .
  • Install requirements:
pip install -r requirements.txt

Proprocessing

First, download LibriTTS and VCTK, then change the paths in config/LibriTTS/preprocess.yaml and config/VCTK/preprocess.yaml, then run

python3 prepare_align.py config/LibriTTS/preprocess.yaml
python3 prepare_align.py config/VCTK/preprocess.yaml

for some preparations.

Alignments of LibriTTS is provided here, and the alignments of VCTK is provided here. You have to unzip the files into preprocessed_data/LibriTTS/TextGrid/ and preprocessed_data/VCTK/TextGrid/.

Then run the preprocessing script:

python3 preprocess.py config/LibriTTS/preprocess.yaml

# Copy stats from LibriTTS to VCTK to keep pitch/energy normalization the same shift and bias.
cp preprocessed_data/LibriTTS/stats.json preprocessed_data/VCTK/

python3 preprocess.py config/VCTK/preprocess.yaml

Training

To train the models in the paper, run this command:

python3 main.py -s train \
                -p config/preprocess/<corpus>.yaml \
                -m config/model/base.yaml \
                -t config/train/base.yaml config/train/<corpus>.yaml \
                -a config/algorithm/<algorithm>.yaml

To reproduce, please use 8 V100 GPUs for meta models, and 1 V100 GPU for baseline models, or else you might need to tune gradient accumulation step (grad_acc_step) setting in config/train/base.yaml to get the correct meta batch size. Note that each GPU has its own random seed, so even the meta batch size is the same, different number of GPUs is equivalent to different random seed.

After training, you can find your checkpoints under output/ckpt/ / / /checkpoints/ , where the project name is set in config/comet.py.

To inference the models, run:

python3 main.py -s test \
                -p config/preprocess/<corpus>.yaml \
                -m config/model/base.yaml \
                -t config/train/base.yaml config/train/<corpus>.yaml \
                -a config/algorithm/<algorithm>.yaml \
                -e <experiment_key> -c <checkpoint_file_name>

and the results would be under output/result/ / / / .

Evaluation

Note: The evaluation code is not well-refactored yet.

cd evaluation/ and check README.md

Pre-trained Models

Note: The checkpoints are with older version, might not capatiable with the current code. We would fix the problem in the future.

Since our codes are using Comet logger, you might need to create a dummy experiment by running:

from comet_ml import Experiment
experiment = Experiment()

then put the checkpoint files under output/ckpt/LibriTTS/ / /checkpoints/ .

You can download pretrained models here.

Results

Corpus LibriTTS VCTK
Speaker Similarity
Speaker Verification

Synthesized Speech Detection

Owner
Sung-Feng Huang
A Ph.D. student at National Taiwan University. Main research includes unsupervised learning, meta learning, speech separation, ASR, and some NLP.
Sung-Feng Huang
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023