[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

Overview

involution

Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVPR'21)

By Duo Li, Jie Hu, Changhu Wang, Xiangtai Li, Qi She, Lei Zhu, Tong Zhang, and Qifeng Chen

TL; DR. involution is a general-purpose neural primitive that is versatile for a spectrum of deep learning models on different vision tasks. involution bridges convolution and self-attention in design, while being more efficient and effective than convolution, simpler than self-attention in form.

Getting Started

This repository is fully built upon the OpenMMLab toolkits. For each individual task, the config and model files follow the same directory organization as mmcls, mmdet, and mmseg respectively, so just copy-and-paste them to the corresponding locations to get started.

For example, in terms of evaluating detectors

git clone https://github.com/open-mmlab/mmdetection # and install

cp det/mmdet/models/backbones/* mmdetection/mmdet/models/backbones
cp det/mmdet/models/necks/* mmdetection/mmdet/models/necks
cp det/mmdet/models/utils/* mmdetection/mmdet/models/utils

cp det/configs/_base_/models/* mmdetection/mmdet/configs/_base_/models
cp det/configs/_base_/schedules/* mmdetection/mmdet/configs/_base_/schedules
cp det/configs/involution mmdetection/mmdet/configs -r

cd mmdetection
# evaluate checkpoints
bash tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]

For more detailed guidance, please refer to the original mmcls, mmdet, and mmseg tutorials.

Currently, we provide an memory-efficient implementation of the involuton operator based on CuPy. Please install this library in advance. A customized CUDA kernel would bring about further acceleration on the hardware. Any contribution from the community regarding this is welcomed!

Model Zoo

The parameters/FLOPs↓ and performance↑ compared to the convolution baselines are marked in the parentheses. Part of these checkpoints are obtained in our reimplementation runs, whose performance may show slight differences with those reported in our paper. Models are trained with 64 GPUs on ImageNet, 8 GPUs on COCO, and 4 GPUs on Cityscapes.

Image Classification on ImageNet

Model Params(M) FLOPs(G) Top-1 (%) Top-5 (%) Config Download
RedNet-26 9.23(32.8%↓) 1.73(29.2%↓) 75.96 93.19 config model | log
RedNet-38 12.39(36.7%↓) 2.22(31.3%↓) 77.48 93.57 config model | log
RedNet-50 15.54(39.5%↓) 2.71(34.1%↓) 78.35 94.13 config model | log
RedNet-101 25.65(42.6%↓) 4.74(40.5%↓) 78.92 94.35 config model | log
RedNet-152 33.99(43.5%↓) 6.79(41.4%↓) 79.12 94.38 config model | log

Before finetuning on the following downstream tasks, download the ImageNet pre-trained RedNet-50 weights and set the pretrained argument in det/configs/_base_/models/*.py or seg/configs/_base_/models/*.py to your local path.

Object Detection and Instance Segmentation on COCO

Faster R-CNN

Backbone Neck Style Lr schd Params(M) FLOPs(G) box AP Config Download
RedNet-50-FPN convolution pytorch 1x 31.6(23.9%↓) 177.9(14.1%↓) 39.5(1.8↑) config model | log
RedNet-50-FPN involution pytorch 1x 29.5(28.9%↓) 135.0(34.8%↓) 40.2(2.5↑) config model | log

Mask R-CNN

Backbone Neck Style Lr schd Params(M) FLOPs(G) box AP mask AP Config Download
RedNet-50-FPN convolution pytorch 1x 34.2(22.6%↓) 224.2(11.5%↓) 39.9(1.5↑) 35.7(0.8↑) config model | log
RedNet-50-FPN involution pytorch 1x 32.2(27.1%↓) 181.3(28.5%↓) 40.8(2.4↑) 36.4(1.3↑) config model | log

RetinaNet

Backbone Neck Style Lr schd Params(M) FLOPs(G) box AP Config Download
RedNet-50-FPN convolution pytorch 1x 27.8(26.3%↓) 210.1(12.2%↓) 38.2(1.6↑) config model | log
RedNet-50-FPN involution pytorch 1x 26.3(30.2%↓) 199.9(16.5%↓) 38.2(1.6↑) config model | log

Semantic Segmentation on Cityscapes

Method Backbone Neck Crop Size Lr schd Params(M) FLOPs(G) mIoU Config download
FPN RedNet-50 convolution 512x1024 80000 18.5(35.1%↓) 293.9(19.0%↓) 78.0(3.6↑) config model | log
FPN RedNet-50 involution 512x1024 80000 16.4(42.5%↓) 205.2(43.4%↓) 79.1(4.7↑) config model | log
UPerNet RedNet-50 convolution 512x1024 80000 56.4(15.1%↓) 1825.6(3.6%↓) 80.6(2.4↑) config model | log

Citation

If you find our work useful in your research, please cite:

@InProceedings{Li_2021_CVPR,
author = {Li, Duo and Hu, Jie and Wang, Changhu and Li, Xiangtai and She, Qi and Zhu, Lei and Zhang, Tong and Chen, Qifeng},
title = {Involution: Inverting the Inherence of Convolution for Visual Recognition},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021}
}
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

ArbSR Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021 [Project] [arXiv] Highlights A plug-in mod

Longguang Wang 229 Dec 30, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
An easy-to-use app to visualise attentions of various VQA models.

Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click

Apoorve 37 Nov 13, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022