UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

Overview

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21

UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks. The project requires Python 3, and several dependencies. This code is released for the course of Autonomous Networking - A.A. 2020-2021, to develop and test AI based protocols.

Execution

In order to execute UAV-Networks-Routing project from the terminal, clone the git project and place yourself in UAV-Networks-Routing directory, then and run:

python -m src.main

The simulation will start in a new window, the parameters of the simulation are set in src.utilities.config, have a look at the simulation setup in the configuration file to understand what is going on in the simulation.

Project structure

The project has the following structure:

.
├── README.md
├── data
│   └── tours
│       ├── RANDOM_missions1.json
│       ├── ...
│       └── RANDOM_missions90.json
└── src
    ├── main.py
    ├── drawing
    │   ├── color.py
    │   ├── picture.py
    │   ├── pp_draw.py
    │   └── stddraw.py
    ├── entities
    │   └── uav_entities.py
    ├── experiments
    ├── routing_algorithms
    │   └── georouting.py
    ├── simulation
    │   ├── metrics.py
    │   └── simulator.py
    └── utilities
        ├── config.py
        └── utilities.py

The entry point of the project is the src.main file, from there you can run simulations and extensive experimental campaigns, by setting up an appropriate src.simulator.Simulator object.

On a high level, the two main directories are data and src. The directory data must contain all the data of the project, like drones tours, and other input and output of the project. The directory src contains the source code, organized in several packages.

  • src.drawing it contains all the classes needed for drawing the simulation on screen. Typically you may want to get your hands in this directory if you want to change the aspect of the simulation, display a new object, or label on the area.

  • src.entites it contains all the classes that define the behaviour and the structure of the main entities of the project like: Drone, Depot, Environment, Packet, Event classes.

  • src.experiments it contains classes that handle experimental campaigns.

  • src.routing_algorithms it contains all the classes modelling the several routing algorithms, every routing algorithm should have its own class, see section Adding routing algorithms below.

  • src.simulation it contains all the classes to handle a simulation and its metrics.

  • src.utilities it contains all the utilities and the configuration parameters. In particular use src.utilities.config file to specify all the constants and parameters for a one-shot simulation, ideal when one wants to evaluate the quality of a routing algorithm making frequent executions. Constants and parameters should always be added here and never be hard-coded.

Understand the project

In this section it will be given a high level overview of the project. Before adding any new file to the project, as a contribute, you may want to run some simulations, understand the idea behind the simulator, and the routing algorithm available.

Make some simulations

Run a simulation from src.main, on a new window it will be displayed a live simulation. At the end of the simulation some metrics will be printed. In the main function, a Simulator object is instantiated with default parameters coming from the src.utilities.config. In order to make different executions and simulations, you may want to let the parameters in the config file vary appropriately.

Let us make an example with an excerpt of the configuration file:

SIM_DURATION = 7000   # int: steps of simulation. # ***
TS_DURATION = 0.150   # float: seconds duration of a step in seconds.
SEED = 1              # int: seed of this simulation.

N_DRONES = 5          # int: number of drones. # ***
ENV_WIDTH = 1500      # float: meters, width of environment.
ENV_HEIGHT = 1500     # float: meters, height of environment.

# events
EVENTS_DURATION = SIM_DURATION   # int: steps, number of time steps that an event lasts.
D_FEEL_EVENT = 500               # int: steps, a new packet is felt (generated on the drone) every 'D_FEEL_EVENT' steps. # ***
P_FEEL_EVENT = .25               # float: probability that the drones feels the event generated on the drone. # ***

From this excerpt, one expects a simulation that lasts for 7000 steps of 0.150 seconds each. The executions will run with seed 1, with 5 drones flying over an area of 1500m * 1500m. The events on the map last for the entire duration of the simulation. The drones are set to feel an event every 500 steps, but they feel it with probability 0.25.

Simulator and K-Routing algorithm

In the simulator, time is simulated. A simulation lasts for SIM_DURATION steps, lasting TS_DURATION seconds each. During a single step, as one can see from src.simulator.Simulator.run(), essentially 4 things happen, for every drone:

  1. it feels an event, if it's the right moment and if it is lucky enough to grasp it from the environment.

  2. it updates the packets in its buffer, deleting all the packets that are expired.

  3. it routes its buffer to its neighbours, if it has any.

  4. it sets its next waypoint and moves towards it, it can be either a point in the map, or the depot, depending on what the routing algorithm decides for it.

The UAVs can have any possible path/tour given by a json file (a dict id_drone : list of waypoints). Notice that a waypoint is a 2-tuple (x, y), the coordinate of the point. Events are generated right on the drone. If an event is successfully "felt", the drone generates a packet out of it and it is responsible to bring it to the depot according to the routing algorithm currently running. Packets can expire and have a TTL to avoid infinite pin-pongs, that are seen to be rare.

The routing algorithms in the project go under the directorysrc.routing_algorithms .

Adding routing algorithms

Routing algorithms should be implemented as a class, extending the src.routing_algorithms.BASE_routing class. This will need the definition of required methods, such as: routing().

Once created, the class should be declared in the configuration file, specifically in the RoutingAlgorithm enumeration, in which it suffices to give a name to the enumeration variable and associate it to the class name. For instance if the created routing algorithm class is named MyRouting, then add in src.utilities.config to the RoutingAlgorithm enumeration the enumeration variable MY_ROUTING = MyRouting.

To run a simulation with your new routing algorithms, just set the attribute ROUTING_ALGORITHM in the config file with the enumeration variable of your choice.

Contacts

For further information contact Andrea Coletta at coletta[AT]di.uniroma1.it.

Thanks and License

The current version of the simulator is free for non-commercial use. The simulator was done in collaboration with Matteo Prata, PhD Student at La Sapienza prata[AT]di.uniroma1.it.

This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022