UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

Overview

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21

UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks. The project requires Python 3, and several dependencies. This code is released for the course of Autonomous Networking - A.A. 2020-2021, to develop and test AI based protocols.

Execution

In order to execute UAV-Networks-Routing project from the terminal, clone the git project and place yourself in UAV-Networks-Routing directory, then and run:

python -m src.main

The simulation will start in a new window, the parameters of the simulation are set in src.utilities.config, have a look at the simulation setup in the configuration file to understand what is going on in the simulation.

Project structure

The project has the following structure:

.
├── README.md
├── data
│   └── tours
│       ├── RANDOM_missions1.json
│       ├── ...
│       └── RANDOM_missions90.json
└── src
    ├── main.py
    ├── drawing
    │   ├── color.py
    │   ├── picture.py
    │   ├── pp_draw.py
    │   └── stddraw.py
    ├── entities
    │   └── uav_entities.py
    ├── experiments
    ├── routing_algorithms
    │   └── georouting.py
    ├── simulation
    │   ├── metrics.py
    │   └── simulator.py
    └── utilities
        ├── config.py
        └── utilities.py

The entry point of the project is the src.main file, from there you can run simulations and extensive experimental campaigns, by setting up an appropriate src.simulator.Simulator object.

On a high level, the two main directories are data and src. The directory data must contain all the data of the project, like drones tours, and other input and output of the project. The directory src contains the source code, organized in several packages.

  • src.drawing it contains all the classes needed for drawing the simulation on screen. Typically you may want to get your hands in this directory if you want to change the aspect of the simulation, display a new object, or label on the area.

  • src.entites it contains all the classes that define the behaviour and the structure of the main entities of the project like: Drone, Depot, Environment, Packet, Event classes.

  • src.experiments it contains classes that handle experimental campaigns.

  • src.routing_algorithms it contains all the classes modelling the several routing algorithms, every routing algorithm should have its own class, see section Adding routing algorithms below.

  • src.simulation it contains all the classes to handle a simulation and its metrics.

  • src.utilities it contains all the utilities and the configuration parameters. In particular use src.utilities.config file to specify all the constants and parameters for a one-shot simulation, ideal when one wants to evaluate the quality of a routing algorithm making frequent executions. Constants and parameters should always be added here and never be hard-coded.

Understand the project

In this section it will be given a high level overview of the project. Before adding any new file to the project, as a contribute, you may want to run some simulations, understand the idea behind the simulator, and the routing algorithm available.

Make some simulations

Run a simulation from src.main, on a new window it will be displayed a live simulation. At the end of the simulation some metrics will be printed. In the main function, a Simulator object is instantiated with default parameters coming from the src.utilities.config. In order to make different executions and simulations, you may want to let the parameters in the config file vary appropriately.

Let us make an example with an excerpt of the configuration file:

SIM_DURATION = 7000   # int: steps of simulation. # ***
TS_DURATION = 0.150   # float: seconds duration of a step in seconds.
SEED = 1              # int: seed of this simulation.

N_DRONES = 5          # int: number of drones. # ***
ENV_WIDTH = 1500      # float: meters, width of environment.
ENV_HEIGHT = 1500     # float: meters, height of environment.

# events
EVENTS_DURATION = SIM_DURATION   # int: steps, number of time steps that an event lasts.
D_FEEL_EVENT = 500               # int: steps, a new packet is felt (generated on the drone) every 'D_FEEL_EVENT' steps. # ***
P_FEEL_EVENT = .25               # float: probability that the drones feels the event generated on the drone. # ***

From this excerpt, one expects a simulation that lasts for 7000 steps of 0.150 seconds each. The executions will run with seed 1, with 5 drones flying over an area of 1500m * 1500m. The events on the map last for the entire duration of the simulation. The drones are set to feel an event every 500 steps, but they feel it with probability 0.25.

Simulator and K-Routing algorithm

In the simulator, time is simulated. A simulation lasts for SIM_DURATION steps, lasting TS_DURATION seconds each. During a single step, as one can see from src.simulator.Simulator.run(), essentially 4 things happen, for every drone:

  1. it feels an event, if it's the right moment and if it is lucky enough to grasp it from the environment.

  2. it updates the packets in its buffer, deleting all the packets that are expired.

  3. it routes its buffer to its neighbours, if it has any.

  4. it sets its next waypoint and moves towards it, it can be either a point in the map, or the depot, depending on what the routing algorithm decides for it.

The UAVs can have any possible path/tour given by a json file (a dict id_drone : list of waypoints). Notice that a waypoint is a 2-tuple (x, y), the coordinate of the point. Events are generated right on the drone. If an event is successfully "felt", the drone generates a packet out of it and it is responsible to bring it to the depot according to the routing algorithm currently running. Packets can expire and have a TTL to avoid infinite pin-pongs, that are seen to be rare.

The routing algorithms in the project go under the directorysrc.routing_algorithms .

Adding routing algorithms

Routing algorithms should be implemented as a class, extending the src.routing_algorithms.BASE_routing class. This will need the definition of required methods, such as: routing().

Once created, the class should be declared in the configuration file, specifically in the RoutingAlgorithm enumeration, in which it suffices to give a name to the enumeration variable and associate it to the class name. For instance if the created routing algorithm class is named MyRouting, then add in src.utilities.config to the RoutingAlgorithm enumeration the enumeration variable MY_ROUTING = MyRouting.

To run a simulation with your new routing algorithms, just set the attribute ROUTING_ALGORITHM in the config file with the enumeration variable of your choice.

Contacts

For further information contact Andrea Coletta at coletta[AT]di.uniroma1.it.

Thanks and License

The current version of the simulator is free for non-commercial use. The simulator was done in collaboration with Matteo Prata, PhD Student at La Sapienza prata[AT]di.uniroma1.it.

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022