UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

Overview

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21

UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks. The project requires Python 3, and several dependencies. This code is released for the course of Autonomous Networking - A.A. 2020-2021, to develop and test AI based protocols.

Execution

In order to execute UAV-Networks-Routing project from the terminal, clone the git project and place yourself in UAV-Networks-Routing directory, then and run:

python -m src.main

The simulation will start in a new window, the parameters of the simulation are set in src.utilities.config, have a look at the simulation setup in the configuration file to understand what is going on in the simulation.

Project structure

The project has the following structure:

.
├── README.md
├── data
│   └── tours
│       ├── RANDOM_missions1.json
│       ├── ...
│       └── RANDOM_missions90.json
└── src
    ├── main.py
    ├── drawing
    │   ├── color.py
    │   ├── picture.py
    │   ├── pp_draw.py
    │   └── stddraw.py
    ├── entities
    │   └── uav_entities.py
    ├── experiments
    ├── routing_algorithms
    │   └── georouting.py
    ├── simulation
    │   ├── metrics.py
    │   └── simulator.py
    └── utilities
        ├── config.py
        └── utilities.py

The entry point of the project is the src.main file, from there you can run simulations and extensive experimental campaigns, by setting up an appropriate src.simulator.Simulator object.

On a high level, the two main directories are data and src. The directory data must contain all the data of the project, like drones tours, and other input and output of the project. The directory src contains the source code, organized in several packages.

  • src.drawing it contains all the classes needed for drawing the simulation on screen. Typically you may want to get your hands in this directory if you want to change the aspect of the simulation, display a new object, or label on the area.

  • src.entites it contains all the classes that define the behaviour and the structure of the main entities of the project like: Drone, Depot, Environment, Packet, Event classes.

  • src.experiments it contains classes that handle experimental campaigns.

  • src.routing_algorithms it contains all the classes modelling the several routing algorithms, every routing algorithm should have its own class, see section Adding routing algorithms below.

  • src.simulation it contains all the classes to handle a simulation and its metrics.

  • src.utilities it contains all the utilities and the configuration parameters. In particular use src.utilities.config file to specify all the constants and parameters for a one-shot simulation, ideal when one wants to evaluate the quality of a routing algorithm making frequent executions. Constants and parameters should always be added here and never be hard-coded.

Understand the project

In this section it will be given a high level overview of the project. Before adding any new file to the project, as a contribute, you may want to run some simulations, understand the idea behind the simulator, and the routing algorithm available.

Make some simulations

Run a simulation from src.main, on a new window it will be displayed a live simulation. At the end of the simulation some metrics will be printed. In the main function, a Simulator object is instantiated with default parameters coming from the src.utilities.config. In order to make different executions and simulations, you may want to let the parameters in the config file vary appropriately.

Let us make an example with an excerpt of the configuration file:

SIM_DURATION = 7000   # int: steps of simulation. # ***
TS_DURATION = 0.150   # float: seconds duration of a step in seconds.
SEED = 1              # int: seed of this simulation.

N_DRONES = 5          # int: number of drones. # ***
ENV_WIDTH = 1500      # float: meters, width of environment.
ENV_HEIGHT = 1500     # float: meters, height of environment.

# events
EVENTS_DURATION = SIM_DURATION   # int: steps, number of time steps that an event lasts.
D_FEEL_EVENT = 500               # int: steps, a new packet is felt (generated on the drone) every 'D_FEEL_EVENT' steps. # ***
P_FEEL_EVENT = .25               # float: probability that the drones feels the event generated on the drone. # ***

From this excerpt, one expects a simulation that lasts for 7000 steps of 0.150 seconds each. The executions will run with seed 1, with 5 drones flying over an area of 1500m * 1500m. The events on the map last for the entire duration of the simulation. The drones are set to feel an event every 500 steps, but they feel it with probability 0.25.

Simulator and K-Routing algorithm

In the simulator, time is simulated. A simulation lasts for SIM_DURATION steps, lasting TS_DURATION seconds each. During a single step, as one can see from src.simulator.Simulator.run(), essentially 4 things happen, for every drone:

  1. it feels an event, if it's the right moment and if it is lucky enough to grasp it from the environment.

  2. it updates the packets in its buffer, deleting all the packets that are expired.

  3. it routes its buffer to its neighbours, if it has any.

  4. it sets its next waypoint and moves towards it, it can be either a point in the map, or the depot, depending on what the routing algorithm decides for it.

The UAVs can have any possible path/tour given by a json file (a dict id_drone : list of waypoints). Notice that a waypoint is a 2-tuple (x, y), the coordinate of the point. Events are generated right on the drone. If an event is successfully "felt", the drone generates a packet out of it and it is responsible to bring it to the depot according to the routing algorithm currently running. Packets can expire and have a TTL to avoid infinite pin-pongs, that are seen to be rare.

The routing algorithms in the project go under the directorysrc.routing_algorithms .

Adding routing algorithms

Routing algorithms should be implemented as a class, extending the src.routing_algorithms.BASE_routing class. This will need the definition of required methods, such as: routing().

Once created, the class should be declared in the configuration file, specifically in the RoutingAlgorithm enumeration, in which it suffices to give a name to the enumeration variable and associate it to the class name. For instance if the created routing algorithm class is named MyRouting, then add in src.utilities.config to the RoutingAlgorithm enumeration the enumeration variable MY_ROUTING = MyRouting.

To run a simulation with your new routing algorithms, just set the attribute ROUTING_ALGORITHM in the config file with the enumeration variable of your choice.

Contacts

For further information contact Andrea Coletta at coletta[AT]di.uniroma1.it.

Thanks and License

The current version of the simulator is free for non-commercial use. The simulator was done in collaboration with Matteo Prata, PhD Student at La Sapienza prata[AT]di.uniroma1.it.

Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023