STEM: An approach to Multi-source Domain Adaptation with Guarantees

Overview

STEM: An approach to Multi-source Domain Adaptation with Guarantees

Introduction

This is the official implementation of ``STEM: An approach to Multi-source Domain Adaptation with Guarantees''

Prerequisites

System Requirement:

  • Anaconda3
  • Cuda toolkit 10.0

Install other environment requirement by Anaconda3 following:

conda env create -f env.yml

Note: the environment requires tensorbayes libs, however, available tensorbayes using Python 2.7. To fix the problem, please download tensorbayes, untar it and override to the env (stem) folder:

tar -xvf tensorbayes.tar
cp -rf ./tensorbayes/* /opt/conda/envs/stem/lib/python3.6/site-packages/tensorbayes/

Dataset Preparation

Please download and unzip the dataset and save all *.mat file under ../datasets. To save time computing, we extracted ResNet101 feature for Office-Caltech10 and provided as following:

Training

The config parameter to train model in config folder, please check it before run. To train the model, simply run:

python run_stem_ht_mimic_hs.py --config 
   
    .yaml --trg_name 
    

    
   

For example:

Train Digit-five with target domain is Synthetic Digits:

python run_stem_ht_mimic_hs.py --config DigitFive.yaml --trg_name syn

Train Office-Caltech10 with target domain is Amazon:

python run_stem_ht_mimic_hs.py --config OfficeCaltech10.yaml --trg_name amazon

Cite

Please cite the paper whenever our STEM is used to produce published results or incorporated into other software:

@InProceedings{Nguyen_2021_ICCV,
author    = {Nguyen, Van-Anh and Nguyen, Tuan and Le, Trung and Tran, Quan Hung and Phung, Dinh},
title     = {STEM: An Approach to Multi-Source Domain Adaptation With Guarantees},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month     = {October},
year      = {2021},
pages     = {9352-9363}

}

Owner
I am just a newbie in Deep learning and want to learn many things :D
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Facebook Research 605 Jan 02, 2023
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
This is the PyTorch implementation of GANs Nā€™ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP šŸš§ WIP šŸš§ Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP šŸ“„ šŸ”— Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022