XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

Overview

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks

ACL 2020 Microsoft Research [Paper] [Video]

Releasing [XtremeDistilTransformers] with Tensorflow 2.3 and HuggingFace Transformers with an unified API with the following features:

  • Distil any supported pre-trained language models as teachers (e.g, Bert, Electra, Roberta)
  • Initialize student model with any pre-trained model (e.g, MiniLM, DistilBert, TinyBert), or initialize from scratch
  • Multilingual text classification and sequence tagging
  • Distil multiple hidden states from teacher
  • Distil deep attention networks from teacher
  • Pairwise and instance-level classification tasks (e.g, MNLI, MRPC, SST)
  • Progressive knowledge transfer with gradual unfreezing
  • Fast mixed precision training for distillation (e.g, mixed_float16, mixed_bfloat16)
  • ONNX runtime inference

Install requirements pip install -r requirements.txt

Initialize XtremeDistilTransformer with (6/384 pre-trained checkpoint)[https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased] or [TinyBERT] (4/312 pre-trained checkpoint)

Sample usages for distilling different pre-trained language models (tested with Python 3.6.9 and CUDA 10.2)

Training

Sequence Labeling for Wiki NER

PYTHONHASHSEED=42 python run_xtreme_distil.py 
--task $$PT_DATA_DIR/datasets/NER 
--model_dir $$PT_OUTPUT_DIR 
--seq_len 32  
--transfer_file $$PT_DATA_DIR/datasets/NER/unlabeled.txt 
--do_NER 
--pt_teacher TFBertModel 
--pt_teacher_checkpoint bert-base-multilingual-cased 
--student_distil_batch_size 256 
--student_ft_batch_size 32
--teacher_batch_size 128  
--pt_student_checkpoint microsoft/xtremedistil-l6-h384-uncased 
--distil_chunk_size 10000 
--teacher_model_dir $$PT_OUTPUT_DIR 
--distil_multi_hidden_states 
--distil_attention 
--compress_word_embedding 
--freeze_word_embedding
--opt_policy mixed_float16

Text Classification for MNLI

PYTHONHASHSEED=42 python run_xtreme_distil.py 
--task $$PT_DATA_DIR/glue_data/MNLI 
--model_dir $$PT_OUTPUT_DIR 
--seq_len 128  
--transfer_file $$PT_DATA_DIR/glue_data/MNLI/train.tsv 
--do_pairwise 
--pt_teacher TFElectraModel 
--pt_teacher_checkpoint google/electra-base-discriminator 
--student_distil_batch_size 128  
--student_ft_batch_size 32
--pt_student_checkpoint microsoft/xtremedistil-l6-h384-uncased 
--teacher_model_dir $$PT_OUTPUT_DIR 
--teacher_batch_size 32
--distil_chunk_size 300000
--opt_policy mixed_float16

Alternatively, use TinyBert pre-trained student model checkpoint as --pt_student_checkpoint nreimers/TinyBERT_L-4_H-312_v2

Arguments


- task folder contains
	-- train/dev/test '.tsv' files with text and classification labels / token-wise tags (space-separated)
	--- Example 1: feel good about themselves <tab> 1
	--- Example 2: '' Atelocentra '' Meyrick , 1884 <tab> O B-LOC O O O O
	-- label files containing class labels for sequence labeling
	-- transfer file containing unlabeled data
	
- model_dir to store/restore model checkpoints

- task arguments
-- do_pairwise for pairwise classification tasks like MNLI and MRPC
-- do_NER for sequence labeling

- teacher arguments
-- pt_teacher for teacher model to distil (e.g., TFBertModel, TFRobertaModel, TFElectraModel)
-- pt_teacher_checkpoint for pre-trained teacher model checkpoints (e.g., bert-base-multilingual-cased, roberta-large, google/electra-base-discriminator)

- student arguments
-- pt_student_checkpoint to initialize from pre-trained small student models (e.g., MiniLM, DistilBert, TinyBert)
-- instead of pre-trained checkpoint, initialize a raw student from scratch with
--- hidden_size
--- num_hidden_layers
--- num_attention_heads

- distillation features
-- distil_multi_hidden_states to distil multiple hidden states from the teacher
-- distil_attention to distil deep attention network of the teacher
-- compress_word_embedding to initialize student word embedding with SVD-compressed teacher word embedding (useful for multilingual distillation)
-- freeze_word_embedding to keep student word embeddings frozen during distillation (useful for multilingual distillation)
-- opt_policy (e.g., mixed_float16 for GPU and mixed_bfloat16 for TPU)
-- distil_chunk_size for using transfer data in chunks during distillation (reduce for OOM issues, checkpoints are saved after every distil_chunk_size steps)

Model Outputs

The above training code generates intermediate model checkpoints to continue the training in case of abrupt termination instead of starting from scratch -- all saved in $$PT_OUTPUT_DIR. The final output of the model consists of (i) xtremedistil.h5 with distilled model weights, (ii) xtremedistil-config.json with the training configuration, and (iii) word_embedding.npy for the input word embeddings from the student model.

Prediction

PYTHONHASHSEED=42 python run_xtreme_distil_predict.py 
--do_eval 
--model_dir $$PT_OUTPUT_DIR 
--do_predict 
--pred_file ../../datasets/NER/unlabeled.txt
--opt_policy mixed_float16

*ONNX Runtime Inference

You can also use ONXX Runtime for inference speedup with the following script:

PYTHONHASHSEED=42 python run_xtreme_distil_predict_onnx.py 
--do_eval 
--model_dir $$PT_OUTPUT_DIR 
--do_predict 
--pred_file ../../datasets/NER/unlabeled.txt

For details on ONNX Runtime Inference, environment and arguments refer to this Notebook The script is for online inference with batch_size=1.

*Continued Fine-tuning

You can continue fine-tuning the distilled/compressed student model on more labeled data with the following script:

PYTHONHASHSEED=42 python run_xtreme_distil_ft.py --model_dir $$PT_OUTPUT_DIR 

If you use this code, please cite:

@inproceedings{mukherjee-hassan-awadallah-2020-xtremedistil,
    title = "{X}treme{D}istil: Multi-stage Distillation for Massive Multilingual Models",
    author = "Mukherjee, Subhabrata  and
      Hassan Awadallah, Ahmed",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.202",
    pages = "2221--2234",
    abstract = "Deep and large pre-trained language models are the state-of-the-art for various natural language processing tasks. However, the huge size of these models could be a deterrent to using them in practice. Some recent works use knowledge distillation to compress these huge models into shallow ones. In this work we study knowledge distillation with a focus on multilingual Named Entity Recognition (NER). In particular, we study several distillation strategies and propose a stage-wise optimization scheme leveraging teacher internal representations, that is agnostic of teacher architecture, and show that it outperforms strategies employed in prior works. Additionally, we investigate the role of several factors like the amount of unlabeled data, annotation resources, model architecture and inference latency to name a few. We show that our approach leads to massive compression of teacher models like mBERT by upto 35x in terms of parameters and 51x in terms of latency for batch inference while retaining 95{\%} of its F1-score for NER over 41 languages.",
}

Code is released under MIT license.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022