[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

Related tags

Deep LearningCoCLR
Overview

CoCLR: Self-supervised Co-Training for Video Representation Learning

arch

This repository contains the implementation of:

  • InfoNCE (MoCo on videos)
  • UberNCE (supervised contrastive learning on videos)
  • CoCLR

Link:

[Project Page] [PDF] [Arxiv]

News

  • [2021.01.29] Upload both RGB and optical flow dataset for UCF101 (links).
  • [2021.01.11] Update our paper for NeurIPS2020 final version: corrected InfoNCE-RGB-linearProbe baseline result in Table1 from 52.3% (pretrained for 800 epochs, unnessary and unfair) to 46.8% (pretrained for 500 epochs, fair comparison). Thanks @liuhualin333 for pointing out.
  • [2020.12.08] Update instructions.
  • [2020.11.17] Upload pretrained weights for UCF101 experiments.
  • [2020.10.30] Update "draft" dataloader files, CoCLR code, evaluation code as requested by some researchers. Will check and add detailed instructions later.

Pretrain Instruction

  • InfoNCE pretrain on UCF101-RGB
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_nce.py --net s3d --model infonce --moco-k 2048 \
--dataset ucf101-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 300 --schedule 250 280 -j 16
  • InfoNCE pretrain on UCF101-Flow
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_nce.py --net s3d --model infonce --moco-k 2048 \
--dataset ucf101-f-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 300 --schedule 250 280 -j 16
  • CoCLR pretrain on UCF101 for one cycle
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_coclr.py --net s3d --topk 5 --moco-k 2048 \
--dataset ucf101-2stream-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 100 --schedule 80 --name_prefix Cycle1-FlowMining_ -j 8 \
--pretrain {rgb_infoNCE_checkpoint.pth.tar} {flow_infoNCE_checkpoint.pth.tar}
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_coclr.py --net s3d --topk 5 --moco-k 2048 --reverse \
--dataset ucf101-2stream-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 100 --schedule 80 --name_prefix Cycle1-RGBMining_ -j 8 \
--pretrain {flow_infoNCE_checkpoint.pth.tar} {rgb_cycle1_checkpoint.pth.tar} 
  • InfoNCE pretrain on K400-RGB
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \
--nproc_per_node=4 main_infonce.py --net s3d --model infonce --moco-k 16384 \
--dataset k400-2clip --lr 1e-3 --seq_len 32 --ds 1 --batch_size 32 \
--epochs 300 --schedule 250 280 -j 16
  • InfoNCE pretrain on K400-Flow
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch \
--nproc_per_node=4 teco_fb_main.py --net s3d --model infonce --moco-k 16384 \
--dataset k400-f-2clip --lr 1e-3 --seq_len 32 --ds 1 --batch_size 32 \
--epochs 300 --schedule 250 280 -j 16
  • CoCLR pretrain on K400 for one cycle
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_coclr.py --net s3d --topk 5 --moco-k 16384 \
--dataset k400-2stream-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 50 --schedule 40 --name_prefix Cycle1-FlowMining_ -j 8 \
--pretrain {rgb_infoNCE_checkpoint.pth.tar} {flow_infoNCE_checkpoint.pth.tar}
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch \
--nproc_per_node=2 main_coclr.py --net s3d --topk 5 --moco-k 16384 --reverse \
--dataset k400-2stream-2clip --seq_len 32 --ds 1 --batch_size 32 \
--epochs 50 --schedule 40 --name_prefix Cycle1-RGBMining_ -j 8 \
--pretrain {flow_infoNCE_checkpoint.pth.tar} {rgb_cycle1_checkpoint.pth.tar} 

Finetune Instruction

cd eval/ e.g. finetune UCF101-rgb:

CUDA_VISIBLE_DEVICES=0,1 python main_classifier.py --net s3d --dataset ucf101 \
--seq_len 32 --ds 1 --batch_size 32 --train_what ft --epochs 500 --schedule 400 450 \
--pretrain {selected_rgb_pretrained_checkpoint.pth.tar}

then run the test with 10-crop (test-time augmentation is helpful, 10-crop gives better result than center-crop):

CUDA_VISIBLE_DEVICES=0,1 python main_classifier.py --net s3d --dataset ucf101 \
--seq_len 32 --ds 1 --batch_size 32 --train_what ft --epochs 500 --schedule 400 450 \
--test {selected_rgb_finetuned_checkpoint.pth.tar} --ten_crop

Nearest-neighbour Retrieval Instruction

cd eval/ e.g. nn-retrieval for UCF101-rgb

CUDA_VISIBLE_DEVICES=0 python main_classifier.py --net s3d --dataset ucf101 \
--seq_len 32 --ds 1 --test {selected_rgb_pretrained_checkpoint.pth.tar} --retrieval

Linear-probe Instruction

cd eval/

from extracted feature

The code support two methods on linear-probe, either feed the data end-to-end and freeze the backbone, or train linear layer on extracted features. Both methods give similar best results in our experiments.

e.g. on extracted features (after run NN-retrieval command above, features will be saved in os.path.dirname(checkpoint))

CUDA_VISIBLE_DEVICES=0 python feature_linear_probe.py --dataset ucf101 \
--test {feature_dirname} --final_bn --lr 1.0 --wd 1e-3

Note that the default setting should give an alright performance, maybe 1-2% lower than our paper's figure. For different datasets, lr and wd need to be tuned from lr: 0.1 to 1.0; wd: 1e-4 to 1e-1.

load data and freeze backbone

alternatively, feed data end-to-end and freeze the backbone.

CUDA_VISIBLE_DEVICES=0,1 python main_classifier.py --net s3d --dataset ucf101 \
--seq_len 32 --ds 1 --batch_size 32 --train_what last --epochs 100 --schedule 60 80 \
--optim sgd --lr 1e-1 --wd 1e-3 --final_bn --pretrain {selected_rgb_pretrained_checkpoint.pth.tar}

Similarly, lr and wd need to be tuned for different datasets for best performance.

Dataset

Result

Finetune entire network for action classification on UCF101: arch

Pretrained Weights

Our models:

Baseline models:

Kinetics400-pretrained models:

Owner
Tengda Han
Tengda Han
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022