Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

Overview

PWC

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows

WACV 2022 preprint:https://arxiv.org/abs/2107.12571

Abstract

Unsupervised anomaly detection with localization has many practical applications when labeling is infeasible and, moreover, when anomaly examples are completely missing in the train data. While recently proposed models for such data setup achieve high accuracy metrics, their complexity is a limiting factor for real-time processing. In this paper, we propose a real-time model and analytically derive its relationship to prior methods. Our CFLOW-AD model is based on a conditional normalizing flow framework adopted for anomaly detection with localization. In particular, CFLOW-AD consists of a discriminatively pretrained encoder followed by a multi-scale generative decoders where the latter explicitly estimate likelihood of the encoded features. Our approach results in a computationally and memory-efficient model: CFLOW-AD is faster and smaller by a factor of 10x than prior state-of-the-art with the same input setting. Our experiments on the MVTec dataset show that CFLOW-AD outperforms previous methods by 0.36% AUROC in detection task, by 1.12% AUROC and 2.5% AUPRO in localization task, respectively. We open-source our code with fully reproducible experiments.

BibTex Citation

If you like our paper or code, please cite its WACV 2022 preprint using the following BibTex:

@article{cflow_ad,
  title={CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows},
  author={Gudovskiy, Denis and Ishizaka, Shun and Kozuka, Kazuki},
  journal={arXiv:2107.12571},
  year={2021}
}

Installation

Install all packages with this command:

$ python3 -m pip install -U -r requirements.txt

Datasets

We support MVTec AD dataset for anomaly localization in factory setting and Shanghai Tech Campus (STC) dataset with surveillance camera videos. Please, download dataset from URLs and extract to data folder or make symlink to that folder or change default data path in main.py).

Code Organization

  • ./custom_datasets - contains dataloaders for MVTec and STC
  • ./custom_models - contains pretrained feature extractors

Training Models

  • Run code by selecting class name, feature extractor, input size, flow model etc.
  • The commands below should reproduce our reference MVTec results using WideResnet-50 extractor:
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name bottle
python3 main.py --gpu 0 --pro -inp 256 --dataset mvtec --class-name cable
python3 main.py --gpu 0 --pro -inp 256 --dataset mvtec --class-name capsule
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name carpet
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name grid
python3 main.py --gpu 0 --pro -inp 256 --dataset mvtec --class-name hazelnut
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name leather
python3 main.py --gpu 0 --pro -inp 256 --dataset mvtec --class-name metal_nut
python3 main.py --gpu 0 --pro -inp 256 --dataset mvtec --class-name pill
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name screw
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name tile
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name toothbrush
python3 main.py --gpu 0 --pro -inp 128 --dataset mvtec --class-name transistor
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name wood
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name zipper

Testing Pretrained Models

  • Download pretrained weights from Google Drive
  • The command below should reproduce MVTec results using light-weight MobileNetV3L extractor (AUROC, AUPRO) = (98.38%, 94.72%):
python3 main.py --gpu 0 --pro -enc mobilenet_v3_large --dataset mvtec --action-type norm-test -inp INPUT --class-name CLASS --checkpoint PATH/FILE.PT

CFLOW-AD Architecture

CFLOW-AD

Reference CFLOW-AD Results for MVTec

CFLOW-AD

Owner
Denis
Machine and Deep Learning Researcher
Denis
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022